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Abstract—We consider an opinion network of multiple individ-
uals with dynamics evolving via a general time-varying continuous
time consensus algorithm. In such a network, a subset of individ-
uals forms an éminence grise coalition (EGC) if the individuals in
that subset are capable of leading the entire network to agreeing
on any desired opinion through a cooperative choice of their
own initial opinions. In this endeavor, the coalition members are
assumed to have access to full profile of the coupling graph of
the network as well as the initial opinions of all other individuals.
We establish the existence of a minimum size EGC and develop a
nontrivial set of tight upper and lower bounds on that size. Thus,
even when the coupling graph does not guarantee convergence to
a global or multiple consensus, a generally restricted coalition of
individuals can steer public opinion toward a desired consensus,
provided they can cooperatively adjust their own initial opinions.
Geometric insights into the structure of EGCs are also given.

Index Terms—Eminence grise, ergodicity, networked control
systems, opinion dynamics, rank of stochastic chains.

I. INTRODUCTION

D ISTRIBUTED averaging algorithms have been widely
used in the past few decades to describe dynamics of a

network. There has been a growing interest from various re-
search communities as to whether a global agreement, also
known as consensus, is asymptotically achieved within the
network. In biology, the notion of consensus arises when inves-
tigating the emergent behavior of bird flocks, fish schools, etc.
[1], [2]. Applications in robotics and control relate to the coor-
dination and cooperation of mobile agents and sensors [3], [4].
In sociology, averaging dynamics can shed light on the dynam-
ics of opinion formation [5]. Consensus algorithms have also
been studied within the computer science [6] and management
science communities [7].

A class of distributed averaging algorithms is characterized
in general by an exogenous coupling chain of opinion update
matrices, which behave like intensity matrices of a Markov
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chain. If the Markov chain, which couples the update dynamics,
is ergodic, then a global agreement is guaranteed irrespective
of the initial opinions [8]. Classifying ergodic chains or its
equivalent problems have been the subject of a large body of lit-
erature of which, to the best of the authors’ knowledge, [9]–[11]
appear to provide the largest class of ergodic chains.

In contrast to the ergodicity problem, which is concerned with
an “unconditional” consensus, this work is motivated by the fol-
lowing questions: What if the coupling chain is not ergodic?
How can a global agreement be achieved in a network with abso-
lutely no assumption on the coupling chain? In other words, for
a network with a general time-varying coupling chain, what can
be said about particular (nontrivial) choices of initial opinions
leading to a possible global agreement? Geometric insights
on the nature of the “march” toward agreement allow one to
realize that such choices of initial opinion vectors form a vector
space, the dimension of which is related to the characteristics
of the coupling chain. The fact that such initial opinion vectors
form a vector space suggests the existence of a possibly small
subgroup of individuals in the network who are capable of steer-
ing the whole group to eventually agree on any desired value
only by collectively adjusting their own initial opinions.

A. Related Work

On the subject of steering the public opinion, a remark-
able work has been performed by Lorenz and Urbig [12],
where the bounded confidence model introduced in [13]
is considered. For relatively small confidence bounds, the
authors investigated the possibility of enforcing consensus
via modification of coupling weights. Furthermore, control-
lability of a linear system via a preferably small subset
of agents, referred to as the leaders, has been widely dis-
cussed in the literature, for example, [14] and [15], which
addressed the time-invariant case. A general framework ad-
dressing controllability was introduced by Liu et al. [16].
For networks with a fixed topology, Monshizadeh et al. [17]
characterize controllable sets of the network via the so-called
zero forcing sets. A generalization to networks with switching
topologies was carried out in [18].

B. Contributions

This paper deals with networks of individuals with scalar
opinions whose dynamics are described by a distributed averag-
ing algorithm in continuous time. An Éminence Grise Coalition
(EGC) of a network is defined as a subset of individuals who can,
for any arbitrary value x∗ ∈ R and any distribution of the rest
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of the individuals’ initial opinions, set their own initial opinions
such that a global agreement on x∗ is asymptotically achieved.
While it is trivial to establish the existence of at least one largest
EGC, namely, the universal coalition of individuals, the main
point of interest in this work is to characterize the size of a
minimal EGC. Contributions of this work are listed as follows.

The notion of rank is defined for the coupling chain of a
general network and shown to be equal to the size of a minimal
EGC of the network. Therefore, the size of a minimal EGC of
a network shall be referred to as the rank of its coupling chain.
A geometric framework is developed to interpret the rank of
the coupling chain and immediately results in a tight upper
bound for the rank (Section III). Futhermore, it is shown that
the ranks of two coupling chains are identical if the two chains
are l1-approximations of each other (Section IV). Tight lower
bounds on the rank are established based on the existing notions
in the literature, namely, the so-called infinite flow graph and
the unbounded interactions graph of the chain (Section V). Em-
ploying the sharp bounds obtained on the rank, we determine
its exact value for time-invariant chains (Section VI) as well as
a large class of time-varying chains, the so-called Class P∗

(Section VII). Finally, full-rank chains, namely, chains with
rank equal to the network size, are precisely characterized,
leading to another upper bound on the rank (Section VIII).

II. NOTIONS AND TERMINOLOGY

Consider N individuals in a network and let V = {1, . . . , N}
be the set of individuals. Assume that t stands for the continuous
time index. Let a time-varying chain {A(t)}t≥0 of square real-
valued matrices of sizeN satisfy the following two assumptions.

Assumption 1: Each matrix A(t), t ≥ 0, has zero row sum
and non-negative offdiagonal elements.

Assumption 2: Each element aij(t) of A(t), i, j ∈ V , t ≥ 0
is measurable and uniformly bounded.

All continuous time chains considered in this paper are
assumed to satisfy Assumptions 1-2. Let the dynamics of the
network be described by the following distributed algorithm:

ẋ(t) = A(t)x(t), t ≥ 0 (1)

where x(t) ∈ RN is the vector of opinions. Thus, xi(t) is the
scalar opinion of individual i at time t. Chain {A(t)} is referred
to as the coupling chain of the network.

Assumption 2 implies that for an arbitrary initial condition,
(1) has a unique solution in the Caratheodory sense.1 Further-
more, there exists a unique1 state transition matrix Φ(t, τ),
t ≥ τ ≥ 0, associated with chain {A(t)} for which

x(t) = Φ(t, τ)x(τ) ∀ t ≥ τ ≥ 0. (2)

Note that the state transition matrix, which is always invertible,1

is the unique solution of

Φ(t, τ) = I +

t∫
τ

A(t′)Φ(t′, τ) dt′, t ≥ τ ≥ 0 (3)

where I is the identity matrix.

1For instance, see [19, Subsections II.4-III.1].

We use the following notation throughout this paper: Φi(t, τ)
and Φi,j(t, τ), 1 ≤ i, j ≤ N , denote the ith column and the
(i, j)th element of Φ(t, τ), respectively. Moreover, the trans-
position of a matrix is indicated by the matrix followed by
prime (′). We emphasize that Φ′

i(t, τ) refers to the ith column
of Φ′(t, τ) (prime acts first). For an arbitrary vector v ∈ RN ,
and 1 ≤ i ≤ N , vi denotes the ith element of v. The vectors
(and matrices) of all zeros and all ones of any size are denoted
by 0 and 1, respectively. For an arbitrary subset S ⊂ V , V \ S
denotes the complement of S in V .

Remark 1: According to Assumption 1, A(t) can be viewed
as the evolution of the intensity matrix of a time inhomogeneous
Markov chain. Consequently, Φi,j(t, τ), t ≥ τ , for a fixed τ can
be viewed as a transition probability in a backward propagating
inhomogeneous Markov chain. In particular, for every t2 ≥
t1 ≥ τ ≥ 0, we have

Φi,j(t2, τ) =
∑
k

Φi,k(t2, t1)Φk,j(t1, τ)

with the following conditions:

Φi,j(t, τ) ≥ 0∑
j∈V

Φi,j(t, τ) = 1

Φi,j(τ, τ) = δij

where δij is the Kronecker symbol.

A. Éminence Grise Coalition

Definition 1 (EGC): For an opinion network with dynamics
(1), a subgroup of individuals S ⊂ V is said to be an Éminence
Grise Coalition (EGC), if for any arbitrary x∗ ∈ R and any
initialization of opinions of individuals in V \ S , there exists
an initialization of opinions of individuals in S such that
limt→∞ x(t) = x∗.1.

From another point of view, an EGC of a network is a
subgroup of individuals who are capable of leading the whole
group toward a global agreement on any desired ultimate opin-
ion only by properly initializing their own opinions, with the
assumption that they are cognizant of the coupling chain of the
network and initial opinions of the remaining individuals.

Example 1: Consider a network with dynamics (1) whose
coupling chain is defined by

A(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎣−1 0 1

0 −1 1
0 0 0

⎤
⎦ if t ∈ [2k − 2, 2k − 1), k ∈ N

⎡
⎣ 0 0 0
1 −1 0
1 0 −1

⎤
⎦ if t ∈ [2k − 1, 2k), k ∈ N.

Note that Assumptions 1-2 are satisfied. Taking advantage of
the periodicity of {A(t)} and calculating matrix exponentials,
one derives

lim
t→∞

Φ(t, 0) = 1.

[
1

e+ 1
0

e

e+ 1

]
(4)

where e is the Euler’s number. We show that {1} is an EGC
of the network. Let x∗ be the desired value of agreement and
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xi(0), i ∈ {2, 3} be the arbitrary initial opinion of individual
i. If individual 1 sets: x1(0) = (e+ 1)x∗ − ex3(0), taking (2)
and (4) into account, an agreement on x∗ would asymptotically
be established. Similarly, {3} is an EGC of the network as well.
However, {2} is not an EGC. Finally, any subset of individuals
with a size greater than 1 is also an EGC since it includes at
least one of the individuals 1 and 3.

Lemma 1: In an opinion network with dynamics (1), a subset
S ⊂ V is an EGC if and only if for any initialization of opinions
of individuals in V \ S , there exists an initialization of opinions
of individuals in S such that limt→∞ x(t) = 0.

Proof: The only if part is obvious by setting x∗ = 0
in Definition 1. Conversely, assume for any initialization of
individuals in V \ S , there exists an initialization of individuals
in S such that all opinions asymptotically converge to zero.
We show in the following that S is an EGC. Let x∗ ∈ R is the
arbitrary desired value of agreement, and xi(0) = x̂i, i ∈ V \ S
are arbitrary but fixed. For a moment, let us assume that the
opinion of each individual i, i ∈ V \ S is initialized at x̂i − x∗.
By the assumption xi(0), i ∈ S , could be set, say on x̂i, in such
a way that all opinions would asymptotically converge to zero.
In other words, the following initialization:

xi(0) =

{
x̂i − x∗, if i ∈ V \ S
x̂i, if i ∈ S

would result in limt→∞ x(t) = 0. Now, the following initializa-
tion, which is essentially a translation of the previous initializa-
tion by x∗:

xi(0) =

{
x̂i, if i ∈ V \ S
x̂i + x∗, if i ∈ S

will lead to an agreement on x∗ noticing that translations are
preserved in consensus dynamics (1). �

Our primary objective in this work is characterizing the size
of a minimal EGC.

B. Rank of a Chain

In this subsection, we define several operators for chains of
matrices. Bold style is used for chain operators to distinguish
them from matrix operators. Let {A(t)} be a chain of matrices
and Φ(t, τ), t ≥ τ ≥ 0 be its associated state transition matrix.

Definition 2 (Null Space): The null space of chain {A(t)} at
time τ ≥ 0, denoted by nullτ (A), is defined by

nullτ (A)
Δ
=
{
v ∈ RN | lim

t→∞
(Φ(t, τ)v) = 0

}
. (5)

One can easily show that nullτ (A) is a subspace of RN for any
τ ≥ 0.

Lemma 2: The dimension of subspace nullτ (A) is indepen-
dent of τ .

Proof: Let τ2 > τ1 ≥ 0 be two arbitrary time instants.
Define linear operator φτ2,τ1 : RN → RN by

φτ2,τ1(v)
Δ
= Φ(τ2, τ1)v, ∀v ∈ RN . (6)

Since Φ(τ2, τ1) is invertible, the operator φτ2,τ1 creates a
one-to-one correspondence between the two vector spaces

nullτ1(A) and nullτ2(A). Thus, the two vector spaces are of
equal dimensions. �

Definition 3 (Nullity and Rank): The dimension of
nullτ (A), τ ≥ 0, which is independent of τ , is called the nullity
of chain {A(t)} and is denoted by nullity(A). Moreover, the
rank of chain {A(t)} is defined by

rank(A)
Δ
= N − nullity(A). (7)

To further clarify the notions, we recall the chain of Example 1.
For periodic chain {A(t)} of Example 1, using (4), one
concludes null0(A) = {(α, β,−α/e) |α, β ∈ R}, which is a
subspace of dimension 2. Therefore, nullity(A) = 2 and, con-
sequently, rank(A) = 1. Thus, for the network of Example 1,
rank(A) is equal to the size of a minimal EGC. We state in the
following theorem, that this is, in fact, true in general.

Theorem 1: The size of a minimal EGC in a network with
dynamics (1) is rank(A).

Proof: Let r
Δ
= rank(A) and h be the size of a minimal

EGC. It is shown in the following that h ≤ r and r ≤ h.
(h ≤ r): We show that there is an EGC of size r. From

Lemma 1, it is sufficient to show that there exists a subset S⊂V
of size r with the property that for any initialization of the
opinions of individuals in V \ S , there exists an initialization of
the opinions of individuals in S such that all opinions asymptot-
ically converge to 0. Note that null0(A) is a vector space with
dimension nullity(A) = N−r. Let {β1, . . . , βN−r} be a basis
of null0(A). Notice that the column-rank of matrix [β1 | · · ·
| βN−r] is N−r, and so is its row-rank. Thus, it has N−r
linearly independent rows. Assume that i1, . . . , iN−r are the in-
dices of N−r, those independent rows, and αi1 , . . . , αiN−r

de-
note those rows, respectively. We wish to show that S defined by

S = V \ {i1, . . . , iN−r}

forms an EGC. Let [
xi1(0) . . . xiN−r

(0)
]′

be an arbitrary vector representing initial opinions of individ-
uals i1, . . . , iN−r. Define v ∈ RN , to potentially represent the
initial opinion vector of all individuals, by

v
Δ
= [β1 | · · · | βN−r]

⎡
⎢⎣

αi1
...

αiN−r

⎤
⎥⎦
−1 ⎡
⎢⎣

xi1(0)
...

xiN−r
(0)

⎤
⎥⎦ . (8)

Note that the inverse matrix in (8) exists since αi1 , . . . , αiN−1

were assumed linearly independent. Since {β1, . . . , βN−r} is a
basis of null0(A), we have v ∈ null0(A), meaning that if v
were the initial opinion vector, all opinions would eventually
converge to 0. On the other hand, vis = xis(0) for every s, 1 ≤
s ≤ N − r, since⎡
⎢⎣

vi1
...

viN−r

⎤
⎥⎦=
⎡
⎢⎣

αi1
...

αiN−r

⎤
⎥⎦
⎡
⎢⎣

αi1
...

αiN−r

⎤
⎥⎦
−1⎡
⎢⎣

xi1(0)
...

xiN−r
(0)

⎤
⎥⎦=
⎡
⎢⎣

xi1(0)
...

xiN−r
(0)

⎤
⎥⎦.

Thus, this part of the proof is now complete since xis(0), 1 ≤
s ≤ N − r, was chosen arbitrarily.
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(r ≤ h): Since there is an EGC of size h, there are N − h
individuals such that for any values of their initial opinions,
there is an initial opinion vector which results in the asymptotic
convergence of all opinions to 0 or, equivalently, an initial opin-
ion vector that belongs to null0(A). Thus, the dimension of the
vector space null0(A) is greater than or equal to N − h, that is,
N − r ≥ N − h. �

Remark 2: Another point of interest regarding the issue of
consensus that we will not further discuss in this work is that
of the nature of the set of initial opinion vectors leading to
consensus in the network with dynamics (1); more precisely{

x(0)|∃x∗ ∈ R : lim
t→∞

x(t) = x∗.1
}
. (9)

We note that set (9) is a subspace of dimension nullity(A) + 1
since it is the subspace spanned by null0(A) and 1.

Keeping Theorem 1 in mind, we focus on the notion of rank
in the rest of this paper.

C. Ergodicity and Class-Ergodicity

Definition 4 (Ergodicity): Chain {A(t)} is said to be ergodic
if for every τ ≥ 0, its associated state transition matrix Φ(t, τ)
converges to a matrix with equal rows as t → ∞.

From [8], the ergodicity of {A(t)} is equivalent to the occur-
rence of consensus in (1) irrespective of the initial conditions.

Definition 5 (Class-Ergodicity): Chain {A(t)} is class-
ergodic if for any τ ≥ 0, limt→∞ Φ(t, τ) exists but has possibly
distinct rows.

We note that chain {A(t)} is class-ergodic if and only if
multiple consensus occurs in (1) irrespective of the values of
the initial opinions. (See [20] and [21].) According to [22], two
individuals i, j ∈ V are said to be mutually weakly ergodic if
for every τ ≥ 0

lim
t→∞

∥∥Φ′
i(t, τ)− Φ′

j(t, τ)
∥∥ = 0. (10)

The relation of being mutually weakly ergodic is an equivalence
relation on V . The equivalence classes of this relation are re-
ferred to as ergodicity classes in this paper. Indeed, these equiv-
alence classes form a partitioning of V and while, in some cases,
they may simply be singletons, they can always be defined for
any {A(t)}. If chain {A(t)} is class-ergodic, that is,
limt→∞ Φ′

i(t, τ) exists for every i ∈ V and τ ≥ 0, then i, j ∈
V are in the same ergodicity class if limt→∞ Φ′

i(t, τ) =
limt→∞ Φ′

j(t, τ), for every τ ≥ 0. We refer to the ergodicity
classes of a class-ergodic chain as ergodic classes.

III. GEOMETRIC INTERPRETATION OF THE RANK

In this section, inspired by [23], we employ a geometric
approach to analyze the asymptotic properties of a chain of ma-
trices. This approach helps to geometrically interpret the rank of
a time-varying chain and identify an upper bound for it.

For chain {A(t)}, define Ct,τ , t ≥ τ ≥ 0 as the convex hull
of points in RN , corresponding to the columns of the transpose
of associated state transition matrix Φ(t, τ), i.e.,

Ct,τ
Δ
=

{
N∑
i=1

αiΦ
′
i(t, τ)

∣∣∣∣∣ αi ≥ 0∀ i ∈ V and
N∑
i=1

αi = 1

}
.

Fig. 1. Example of nested polygons converging to a triangle.

Note that since Φ(t, τ) is invertible, Φ′
i(t, τ)’s, i ∈ V , are

linearly independent and none of them lies in the convex hull
of the rest. Thus, Φ′

i(t, τ)’s form the N vertices of polytope
Ct,τ . From [23, Prop. 5.1], we know that for every t2 ≥ t1 ≥ τ ,
we have Ct2,τ ⊂ Ct1,τ . It means that polytopes Ct,τ , for an
arbitrary fixed τ , form a decreasing sequence of polytopes in
RN . An example of these nested polytopes projected on a 2-D
subspace of RN is depicted in Fig. 1.

For any τ ≥ 0, limt→∞ Ct,τ exists and is a polytope in RN

due to the existence of a uniform upper bound, namely, N on
the number of vertices of the nested polytopes. Let Cτ denote
the limiting polytope and cτ be the number of its vertices.

Lemma 3: cτ , τ ≥ 0, is independent of τ .
Proof: It suffices to show that cτ1 =cτ2 for any two arbi-

trary time instants τ2≥τ1≥0. We first claim that cτ1 ≤cτ2 . To
prove our claim, we define linear operator φ′

τ2,τ1
:RN →RN by

φ′
τ2,τ1

(v)
Δ
= Φ′(τ2, τ1)v, ∀v ∈ RN . (11)

As a property of the state transition matrix, for any t ≥ τ2

Φ′(t, τ1) = Φ′(τ2, τ1)Φ
′(t, τ2). (12)

Our claim cτ1 ≤ cτ2 shall be proved by taking the three follow-
ing steps. From (11) and (12), we first show that for any t ≥ τ2,
Ct,τ1 is the image ofCt,τ2 underφ′

τ2,τ1
. Then, we obtain thatCτ1

is the image ofCτ2 under φ′
τ2,τ1

. Finally, we conclude our claim.
Any vector in convex hull Ct,τ2 can be written as a convex

combination of the vertices ofCt,τ2 each of which is a column of
Φ′(t, τ2). Therefore, for any v ∈ Ct,τ2 , there exists a stochastic
vector u∈RN such that v=Φ′(t, τ2)u. From (12), we now have

φ′
τ2,τ1

(v) =Φ′(τ2, τ1)v = Φ′(τ2, τ1)Φ
′(t, τ2)

=Φ′(t, τ1)u ∈ Ct,τ1 .

Thus, the image of any vector in Ct,τ2 under φ′
τ2,τ1

lies in Ct,τ1 .
Similarly, for any v̄ ∈ Ct,τ1 , there exists a stochastic vector ū
such that v̄ = Φ′(t, τ1)ū. Using (12), we have

v̄ = Φ′(t, τ1)ū = Φ′(τ2, τ1)Φ
′(t, τ2)ū = φ′

τ2,τ1
(Φ′(t, τ2)ū)

where Φ′(t, τ2)ū ∈ Ct,τ2 since ū is stochastic. Thus, any vector
in Ct,τ1 is the image of a vector in Ct,τ2 under φ′

τ2,τ1
. Hence,

Ct,τ2 is mapped to Ct,τ1 under φ′
τ2,τ1

. Now, by taking t to infin-
ity, from the continuity of linear operator φ′

τ2,τ1
, we conclude

that Cτ2 is mapped to Cτ1 under φ′
τ2,τ1

. Assume now that v1,
. . . , vcτ2 are the cτ2 vertices of Cτ2 . Since Cτ1 is the image of
Cτ2 under φ′

τ2,τ1
, for an arbitrary v̄ ∈ Cτ1 , there exists v ∈ Cτ2
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such that v̄ = φ′
τ2,τ1

(v). Since v ∈ Cτ2 , there exists a stochastic
vector u such that

v =
[
v1 · · · vcτ2

]
u. (13)

Mapping both sides of (13) under operator φ′
τ2,τ1

, we obtain

v̄ =
[
φ′
τ2,τ1

(v1) · · · φ′
τ2,τ1

(
vcτ2

)]
u

meaning that vector v̄ in Cτ1 can be expressed as a convex
combination of cτ2 vectors

φ′
τ2,τ1

(v1), . . . , φ
′
τ2,τ1

(
vcτ2

)
. (14)

Taking into account that the choice of v̄ ∈ Cτ1 was arbitrary,
Cτ1 is a subset of the convex hull of the vectors of (14). On the
other hand, all vectors of (14) lie in Cτ1 since each is the image
of a vector in Cτ2 . Thus, Cτ1 is the convex hull of the vectors
of (14). Consequently, the number of vertices of Cτ1 are within
the vectors of (14), which results in cτ1 ≤ cτ2 . To complete the
proof, it is sufficient to show that cτ2 ≤ cτ1 . To this aim, one
defines linear operator φ′−1

τ2,τ1
, which is the inverse of φ′

τ2,τ1
,

and proceeds with the exact same arguments as before. Notice
that the inverse operator exists due to the invertibility of matrix
Φ′(τ2, τ1). �

Remark 3: The argument in the proof of Lemma 3 also
implies that for every τ2 ≥ τ1, the vertices of Cτ2 are mapped
to the vertices of Cτ1 under φ′

τ2,τ1
.

Let integer c be the constant value of cτ , τ ≥ 0. We will show
later in this section that c is equal to rank(A). To prove this,
we first state the following two lemmas.

Lemma 4: rank(A) is equal to the dimension of the vector
space generated by the vectors corresponding to the vertices of
Cτ , for every τ ≥ 0.

Proof: It suffices to prove Lemma 4 for τ = 0. Let
v1, . . . , vc ∈ RN be the c vertices of C0. It is easy to see that
for any u ∈ RN

u ∈ null0(A) ⇐⇒ v′iu = 0, ∀ i, 1 ≤ i ≤ c.

It implies that the dimension of the vector space generated by
v1, . . . , vc is N − nullity(A), which proves the lemma. �

Lemma 5: For every τ ≥ 0, the vectors corresponding to the
vertices of Cτ are linearly independent.

Sketch of Proof: In view of Lemmas 3 and 4, if one proves
Lemma 5 for some t ≥ 0, it is immediately implied for any
t ≥ 0. We shall show that there exists:

• a sufficiently large time T ;
• agent sequences {it}, 1 ≤ i ≤ c;
• subsets Si of V , 1 ≤ i ≤ c

that satisfy the following properties:

i) Φ′
it
(t, T ) converges to an exclusive vertex of Cτ , say ui,

as t grows large;
ii) Si’s are nonempty and pairwise disjoint;

iii)
∑

j �∈Si Φit,j(t, T ) is sufficiently small for any t ≥ T .

From Property iii), we then conclude that
∑

j �∈Si(ui)j is suf-
ficiently small as well. This is, in fact, equivalent to

∑
j∈Si(ui)j

being sufficiently close to 1 (since ui is stochastic). Finally,
from the disjointness of Si’s, we conclude that ui’s are linearly
independent.

Fig. 2. Affine hyperplanes pi, li,mi are orthogonal to viwi.

Proof: Let v1, . . . , vc be the c vertices of C0. We note that
vector vi, 1 ≤ i ≤ c, must lie outside the convex hull of vj’s,
j �= i, since otherwise it would not qualify as a vertex. For every
i, 1 ≤ i ≤ c, let wi in the convex hull of vj’s, j �= i, be such
that it has the minimum distance from vi. Notice that wi exists
since the convex hull of vj’s, j �= i, is a compact subset of RN

as it is both bounded and closed. Define the following positive
numbers:

ε
Δ
=

1

4
min {‖vi − wi‖ | 1 ≤ i ≤ c} (15)

ε1
Δ
=

ε

(2N)
. (16)

For every i, 1 ≤ i ≤ c, we define three affine hyperplanes in RN

as follows. As depicted in Fig. 2, let pi be the affine hyperplane
in RN crossing wi and orthogonal to vector vi − wi, i.e.,

pi =
{
y ∈ RN | (vi − wi)

′(y − wi) = 0
}
.

Affine hyperplane pi splits RN into two half-spaces

p−i =
{
y ∈ RN | (vi − wi)

′(y − wi) < 0
}

(17)

p+i =
{
y ∈ RN | (vi − wi)

′(y − wi) > 0
}
. (18)

Notice that vi ∈ p+i and the convex hull of vj’s, j �= i, com-
pletely lies in pi ∪ p−i . Let li be the unique affine hyperplane
which is parallel to pi, distant ε from vi, and crossing segment
viwi (the convex hull of vi and wi). Formally, we have

li =
{
y ∈ RN |(vi − wi)

′

×
[
y −

(
‖vi − wi‖ − ε

‖vi − wi‖
vi +

ε

‖vi − wi‖
wi

)]
= 0

}
.

Similar to (17) and (18), half-spaces l−i and l+i are defined.
Notice that vi ∈ l+i and the convex hull of vj’s, j �= i, lies in
l−i . Finally, let mi be the affine hyperplane parallel to pi, distant
ε1 from vi, and not crossing segment viwi

mi =
{
y ∈ RN |(vi − wi)

′

×
[
y −

(
‖vi − wi‖+ ε1

‖vi − wi‖
vi +

−ε1
‖vi − wi‖

wi

)]
= 0

}

and define half-spaces m−
i and m+

i similar to (17) and (18).
Notice that C0, including its vertex vi, completely lies in m−

i .
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Since C0 is the limit of Ct,0 as t goes to infinity, there must
exist a sufficiently large time T ≥ 0, such that for t ≥ T , every
point in Ct,0 lies within an ε1-distance of C0. Define for every
i, 1 ≤ i ≤ c

Si =
{
j ∈ V|Φ′

j(T, 0) ∈ l+i ∩m−
i

}
.

Set l+i ∩m−
i can be viewed as a strip in RN which is margined

by the two affine hyperplanes li and mi. Note that by the
assumption, T is so large that every point in CT,0, including
Φ′

j(T, 0) for any j, lies within an ε1-distance of C0. Therefore,
we must have Φ′

j(T, 0) ∈ m−
i for every j. In other words,

Φ′
j(T, 0) either lies in l+i ∩m−

i or li ∪ l−i . The latter cannot
occur for every j since otherwise CT,0 would completely lie
in l−i , which would be a contradiction as CT,0 must contain
vi �∈ l−i . Thus, Φ′

j(T, 0) lies in l+i ∩m−
i for some j, meaning

that Si is nonempty. We claim that Si’s, 1 ≤ i ≤ c, are pairwise
disjoint sets. Let i, j ∈ V be arbitrary but fixed. By the defining
property of T , for every k ∈ Si ∩ Sj , Φ′

k(T, 0) must be within
an ε1-distance of C0. Noticing that{

Φ′
k(T, 0) | k ∈ Si ∩ Sj

}
⊂ l+i ∩ l+j

to prove the claim, it suffices to show that any point in l+i ∩ l+j
cannot be within ε1-distance of C0. Consider an arbitrary point
in C0 and let

∑c
k=1 βkvk be its representation as the convex

combination of v1, . . . , vc. Obviously, at least one of βi and
βj does not exceed 1/2. If βi ≤ 1/2, then any point in l+i has
a distance greater than (1/2)‖vi − wi‖ − ε from

∑c
k=1 βkvk,

and from (15), we know that

1

2
‖vi − wi‖ − ε ≥ ε > ε1.

Similarly, if βj ≤ 1/2, any point in l+j has a distance greater
than ε1 from

∑c
k=1 βkvk. Thus, either way, we conclude

that any point in l+i ∩ l+j cannot be within ε1-distance of∑c
k=1 βkvk, which proves the claim. With polytope C0 being

the limit of shrinking convex hulls Ct,0’s, it follows that for
i = 1, . . . , c, there exist sequences {it} of individuals such that
Φ′

it
(t, 0) converges to vi. Therefore, after some finite time, we

have the following inequality:∥∥Φ′
it
(t, 0)− vi

∥∥ < ε1. (19)

Without loss of generality, we can assume that inequality (19)
holds for any t ≥ T (otherwise, we would proceed by replacing
T with T ′, T ′ > T , such that inequality (19) holds for every
t ≥ T ′). For any t ≥ T , we now have

Φ′
it
(t, 0) =Φ′(T, 0)Φ′

it
(t, T )

=
∑
j∈V

Φit,j(t, T )Φ
′
j(T, 0)

=
∑
j �∈Si

Φit,j(t, T )Φ
′
j(T, 0)

+
∑
j∈Si

Φit,j(t, T )Φ
′
j(T, 0). (20)

We now claim that for every i, 1 ≤ i ≤ c, and any t ≥ T , the
following two inequalities hold:

∑
j �∈Si

Φit,j(t, T ) <
2

(2N + 1)
(21)

∑
j∈Si

Φit,j(t, T ) > 1− 2/(2N + 1). (22)

To prove (21) and (22), we use (20) to find a lower bound for
the distance from Φ′

it
(t, 0), t ≥ T , to affine hyperplane mi as

drawn in Fig. 2. Remember that if j ∈ Si, then Φ′
j(T, 0) lies in

l+i ∩m−
i , while if j �∈ Si, then Φ′

j(T, 0) lies in li ∪ l−i . For

a fixed i, 1 ≤ i ≤ c, let η
Δ
=
∑

j �∈Si Φit,j(t, T ). With matrix
Φ(t, T ) being row-stochastic, it follows that

∑
j∈Si Φit,j(t,

T ) = 1− η. Using (20), we now conclude that η(ε1 + ε) +
(1− η)0 is a lower bound for the distance from Φ′

it
(t, 0),

t ≥ T , to affine hyperplane mi. On the other hand, this distance
is upper bounded by 2ε1 according to (19). Thus

η(ε1 + ε) + (1− η)0 < 2ε1. (23)

Therefore, remembering ε = 2Nε1, inequality (23) implies that
η < 2/(2N + 1), which proves (21) and (22). From Remark 3,
every vertex vi of C0 is the image of a vertex of CT , say ui,
under φ′

T,0

vi = φ′
T,0(ui). (24)

We also have

Φ′
it
(t, 0) = Φ′(T, 0)Φ′

it
(t, T ) = φ′

T,0

(
Φ′

it
(t, T )

)
. (25)

Recalling limt→∞ Φ′
it
(t, 0) = vi from (24) and (25), and

the continuity of the inverse of operator φ′
T,0, we obtain

limt→∞ Φ′
it
(t, T ) = ui. Considering (22) again, and taking

limits as t → ∞, we conclude∑
j∈Si

(ui)j ≥ 1− 2/(2N + 1) (26)

and consequently

∑
j �∈Si

(ui)j ≤
2

(2N + 1)
. (27)

In the following text, we show that u1, . . . , uc, that is, the
vertices of CT , are linearly independent. Assume that λ1, . . . ,
λc ∈ R are such that

c∑
i=1

λiui = 0. (28)

Moreover, let k, 1 ≤ k ≤ c be such that

|λk| = max
1≤i≤c

{|λi|} Δ
= λ.

If λ > 0, noting that (26) and (27) hold for any vertex ui of CT

including uk, and that the Si’s are disjoint sets of individuals,
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from (28), we have

0 =

∣∣∣∣∣
∑
j∈Sk

c∑
i=1

λi(ui)j

∣∣∣∣∣
=

∣∣∣∣
∑
j∈Sk

λk(uk)j +
∑
j∈Sk

∑
i�=k

λi(ui)j

∣∣∣∣
≥ |λk|.

∣∣∣∣
∑
j∈Sk

(uk)j

∣∣∣∣−∑
i�=k

(
|λi|.

∑
j∈Sk

(ui)j
)

≥ |λk|.
∣∣∣∣
∑
j∈Sk

(uk)j

∣∣∣∣−∑
i�=k

(
|λi|.

∑
j �∈Si

(ui)j
)

≥λ (1− 2/(2N + 1))− λ(c− 1).2/(2N + 1)

=λ (2(N − c) + 1) /(2N + 1) > 0 (29)

which is a contradiction. We note that the second inequality in
(29) is a result of Si and Sk being disjoint sets, that is, Sk ∈
V \ Si. Thus, we must have λ = 0, which means λi = 0, ∀i,
1 ≤ i ≤ c. This proves the lemma. �

Theorem 2: The size of a minimal EGC of a network with
dynamics (1) is equal to c, that is, the constant value of cτ, τ≥0,
where cτ is the number of vertices of limiting polytope Cτ.

Proof: Theorem 2 is an immediate result of Theorem 1
and Lemmas 4 and 5. �

Theorem 3: The size of a minimal EGC of a network with
dynamics (1) is less than or equal to the number of ergodicity
classes of {A(t)}.

Proof: We show that the number of ergodicity classes is
at least c. Recall limiting polytope C0 with vertices v1, . . . , vc
from earlier in the section. Remember from the proof of
Lemma 5 that for i = 1, . . . , c, there exist sequences {it} of
individuals such that Φ′

it
(t, 0) converges to vi. Let

ε2 =
1

3
min {‖vi − vj‖ |i, j ∈ V, i �= j} . (30)

In view of (10), for any fixed τ ≥ 0, there exists a sufficiently
large time T such that for any t ≥ T and i, j is in the same
ergodicity class ∥∥Φ′

i(t, τ)− Φ′
j(t, τ)

∥∥ < ε2. (31)

Moreover, there is T ′ > 0 such that for any t ≥ T ′ and i ∈ V∥∥Φ′
it
(t, 0)− vi

∥∥ < ε2. (32)

Thus, for every t ≥ T ′ and i �= j, 1 ≤ i, j ≤ c, we must have

3ε2 ≤‖vi − vj‖
≤
∥∥vi − Φ′

it
(t, 0)

∥∥+ ∥∥Φ′
it
(t, 0)− Φ′

jt
(t, 0)

∥∥
+
∥∥Φ′

jt
(t, 0)− vj

∥∥
<ε2 +

∥∥Φ′
it
(t, 0)− Φ′

jt
(t, 0)

∥∥+ ε2. (33)

Note that the first, second, and third inequalities of (33) are im-
plied from (30), the triangle inequality, and (32), respectively.
From (33)∥∥Φ′

it
(t, 0)− Φ′

jt
(t, 0)

∥∥ > ε2 ∀ t ≥ T ′. (34)

Taking (31) into account, from (34), we conclude that it and jt
cannot be in the same ergodicity class for all t ≥ max{T, T ′}.
Thus, there are at least c distinct ergodicity classes, which com-
pletes the proof. �

Remark 4: In case {A(t)}, the coupling chain of a network
with dynamics (1), is class-ergodic, the occurrence of multiple
consensus in the network is guaranteed, and the number of
ergodic classes becomes equal to the number of consensus clus-
ters. Yet, this number may be larger than the size of a minimal
EGC of the network. In other words, there may exist an EGC in
which some of the consensus clusters has no representative. As
an illustrative example, consider system (1) of three individuals
with a fixed coupling chain

A(t) =

⎡
⎣ 0 0 0

1
3 −1 2

3
0 0 0

⎤
⎦ , ∀ t ≥ 0.

We then have

lim
t→∞

x(t) =

⎡
⎣ x1(0)

(x1(0)+2x3(0))
3

x3(0)

⎤
⎦ .

Also notice that for the corresponding state transition matrix,
we have

lim
t→∞

Φ(t, τ) =

⎡
⎣ 1 0 0

1
3 0 2

3
0 0 1

⎤
⎦ , ∀ τ ≥ 0.

Therefore, each individual forms a consensus cluster, that is,
there are three consensus clusters. However, subgroup {1,3}
with size two is an EGC of the network since, irrespective of
the initial opinion of individual 2, an agreement on value x∗ is
achieved if individuals 1 and 3 initialize their opinions at x∗.

IV. APPROXIMATION OF CHAINS

In this section, we introduce the continuous time version
of l1-approximation of chains, initially introduced in [22] for
discrete time chains, and show that the rank of a chain is
invariant under any l1-approximation.

Definition 6 (l1-Approximation): Chain {A(t)} is said to be
an l1-approximation of chain {B(t)} if

∞∫
0

‖A(t)−B(t)‖∞ dt < ∞ (35)

where ‖.‖∞ refers to the maximum absolute row sum.
It is not difficult to show that l1-approximation is an equiv-

alence relation in the set of chains that satisfy Assumptions 1
and 2. The importance of the l1-approximation notion in this
work comes from the following proposition.

Proposition 1: Rank of a chain is invariant under
l1-approximation.

In the remainder of this section, we prove Proposition 1. We
first state a lemma which roughly implies that if two chains are
close, their state transition matrices are close as well.

Lemma 6: For any two chains {A(t)} and {B(t)}, and any
t ≥ τ ≥ 0, the following holds:

‖ΦA(t, τ)− ΦB(t, τ)‖∞ ≤
t∫

τ

‖A(t′)−B(t′)‖∞ dt′ (36)
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where ΦA(t, τ) and ΦB(t, τ) are state transition matrices asso-
ciated with {A(t)} and {B(t)}, respectively.

Proof: For simplification, we write ‖.‖ for ‖.‖∞ in this
proof. Inequality (36) is obviously satisfied if t = τ . Let t >
τ ≥ 0 be arbitrary but fixed. From Assumption 2, aij and bij
are bounded on interval [τ, t] for every i, j ∈ V . Define

M
Δ
= sup

τ≤t′≤t
{‖A(t′)‖ , ‖B(t′)‖} . (37)

For any τ0, t0 ∈ [τ, t], τ0 ≤ t0 and according to (3), we have

‖ΦA(t0, τ0)− I‖ =

∥∥∥∥∥∥
t0∫

τ0

A(t′)ΦA(t
′, τ0)dt

′

∥∥∥∥∥∥
≤

t0∫
τ0

‖A(t′)‖ ‖ΦA(t
′, τ0)‖ dt′

=

t0∫
τ0

‖A(t′)‖ dt′ ≤ M(t0 − τ0). (38)

From (38), since t0 is arbitrary, we conclude

sup
τ0≤t′≤t0

‖ΦA(t
′, τ0)− I‖ ≤ sup

τ0≤t′≤t0

M(t′ − τ0)

=M(t0 − τ0). (39)

Similarly

sup
τ0≤t′≤t0

‖ΦB(t
′, τ0)− I‖ ≤ M(t0 − τ0). (40)

Let α>0 be arbitrary. If t0−τ0<(α/2M2), one further writes
(41), shown at the bottom of the page. Note that to write the
second inequality of (41), we used ‖ΦA‖ = 1, together with

(37), while the third inequality is implied from (39) and (40).
Thus, if we define

f(t0, τ0)
Δ
=

‖ΦA(t0, τ0)−ΦB(t0, τ0)‖−
t0∫
τ0

‖A(t′)−B(t′)‖ dt′

t0−τ0

then, for any t0 − τ0 < α/(2M2), we have

f(t0, τ0) < α. (42)

On the other hand, one can prove

f(t, τ) ≤ 1

2
f

(
t,
t+ τ

2

)
+

1

2
f

(
t+ τ

2
, τ

)
(43)

by taking into account

‖ΦA(t, τ)− ΦB(t, τ)‖

=

∥∥∥∥ΦA

(
t,
t+ τ

2

)
ΦA

(
t+ τ

2
, τ

)

−ΦB

(
t,
t+ τ

2

)
ΦB

(
t+ τ

2
, τ

)∥∥∥∥
=

∥∥∥∥
[
ΦA

(
t,
t+ τ

2

)
− ΦB

(
t,
t+ τ

2

)]
ΦA

(
t+ τ

2
, τ

)

+ΦB

(
t,
t+τ

2

)[
ΦA

(
t+τ

2
, τ

)
− ΦB

(
t+τ

2
, τ

)]∥∥∥∥
≤
∥∥∥∥ΦA

(
t,
t+ τ

2

)
− ΦB

(
t,
t+ τ

2

)∥∥∥∥
∥∥∥∥ΦA

(
t+ τ

2
, τ

)∥∥∥∥
+

∥∥∥∥ΦB

(
t,
t+ τ

2

)∥∥∥∥
∥∥∥∥ΦA

(
t+ τ

2
, τ

)
− ΦB

(
t+ τ

2
, τ

)∥∥∥∥
=

∥∥∥∥ΦA

(
t,
t+ τ

2

)
− ΦB

(
t,
t+ τ

2

)∥∥∥∥
+

∥∥∥∥ΦA

(
t+ τ

2
, τ

)
− ΦB

(
t+ τ

2
, τ

)∥∥∥∥

‖ΦA(t0, τ0)− ΦB(t0, τ0)‖
t0 − τ0

=

∥∥∥∥∥
t0∫
τ0

[A(t′)ΦA(t
′, τ0)−B(t′)ΦB(t

′, τ0)] dt
′

∥∥∥∥∥
t0 − τ0

=

∥∥∥∥∥
t0∫
τ0

[(A(t′)−B(t′)) ΦA(t
′, τ0) +B(t′) (ΦA(t

′, τ0)− I)−B(t′) (ΦB(t
′, τ0)− I)] dt′

∥∥∥∥∥
t0 − τ0

≤

t0∫
τ0

‖A(t′)−B(t′)‖ ‖ΦA(t
′, τ0)‖ dt′

t0 − τ0
+

t0∫
τ0

‖B(t′)‖ ‖ΦA(t
′, τ0)− I‖ dt′

t0 − τ0

+

t0∫
τ0

‖B(t′)‖ ‖ΦB(t
′, τ0)− I‖ dt′

t0 − τ0

≤

t0∫
τ0

‖A(t′)−B(t′)‖ dt′

t0 − τ0
+M

(
sup

τ0≤t′≤t0

‖ΦA(t
′, τ0)− I‖

)
+M

(
sup

τ0≤t′≤t0

‖ΦB(t
′, τ0)− I‖

)

≤

t0∫
τ0

‖A(t′)−B(t′)‖ dt′

t0 − τ0
+M.M(t0 − τ0) +M.M(t0 − τ0)

<

t0∫
τ0

‖A(t′)−B(t′)‖ dt′

t0 − τ0
+ α (41)
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and
t∫

τ

‖A(t′)−B(t′)‖ dt′ =
t∫

t+τ
2

‖A(t′)−B(t′)‖ dt′

+

t+τ
2∫

τ

‖A(t′)−B(t′)‖ dt′.

We claim that f(t, τ) < α. Inequality (43) means that if
f(t, (t+ τ)/2) and f((t+ τ)/2, τ) are both less than α, then
so is f(t, τ). Thus, it suffices to prove the claim for f(t, (t+
τ)/2) and f((t+ τ)/2, τ). Similarly, we split each interval
(t, (t+ τ)/2) and ((t+ τ)/2, τ) into half and continue the
process until we obtain intervals of length less than α/(2M2).
Then, using (42), our claim is proved. Since α > 0 was chosen
arbitrarily, f(t, τ) ≤ 0. This proves the lemma. �

We now prove Proposition 1. Let chain {B(t)} be an
l1-approximation of chain {A(t)}. We only show that
rank(B) ≥ rank(A) which proves Proposition 1 due to the
symmetry of l1-approximation. Let rank(A) = c. Assume that
v1(τ), . . . , vc(τ) are the c vertices of Cτ formed based on the
state transition matrix of {A(t)}. Let

Sτ
Δ
= {v1(τ), . . . , vc(τ)}

v(τ)
Δ
= [v1(τ) | · · · | vc(τ)] .

Define linear independency index ζ as follows to quantify the
extent by which the vertices of Cτ are linearly independent:

ζ(τ)
Δ
= min {‖v(τ)λ‖1 | λ ∈ Rn, ‖λ‖1 = 1} (44)

where ‖.‖1 refers to the 1-norm. Note that existence of a min-
imum in (44) is guaranteed by continuity and the compactness
of the unit ball. Furthermore, ζ(τ) > 0 for any τ since zero
does not belong to the set on the right-hand side of (44) due
to the linear independency of the vertices of Cτ . We now
claim that ζ(τ) is nondecreasing by τ . Assume that τ2 ≥ τ1.
According to Remark 3, for some permutation matrix P , we
have v(τ1) = PΦ′(τ2, τ1)v(τ2). Thus, ∀λ ∈ RN

‖v(τ1)λ‖1 = ‖PΦ′(τ2, τ1)v(τ2)λ‖1
≤‖P‖1 ‖Φ′(τ2, τ1)‖1 ‖v(τ2)λ‖1 ≤ ‖v(τ2)λ‖1

which proves our claim. Hence, for all τ ≥ 0

ζ(τ) ≥ ζ(0)
Δ
= ζ0 > 0. (45)

From the definition of l1-approximation (35), we conclude

lim
τ→∞

∞∫
τ

‖A(t)−B(t)‖∞ = 0.

Thus, from Lemma 6, for any ε > 0, there exists T > 0 such
that for every t ≥ τ ≥ T , we have

‖ΦA(t, τ)− ΦB(t, τ)‖∞ < ε

or equivalently

‖Φ′
A(t, τ)− Φ′

B(t, τ)‖1 < ε. (46)

Let rank(B)
Δ
= c′. Assume for some fixed τ ≥ T , that u1(τ),

. . . , uc′(τ) are the c′ vertices of Cτ (B) which is the limiting

polytope generated by the state transition matrix of {B(t)} and

u(τ)
Δ
= [u1(τ) | · · · | uc′(τ)] .

If t → ∞ in (46), limiting polytopes Cτ (A) and Cτ (B) lie
within ε-distance of each other with respect to 1-norm, i.e.,

sup
z1∈Cτ

{
inf

z2∈Cτ (B)
{‖z1 − z2‖1}

}
≤ ε.

In particular, every vertex vi(τ) of Cτ is within an ε-distance
of some point in Cτ (B). Thus, since any point in Cτ (B) can
be expressed as a convex combination of the vertices of Cτ (B),
for some γi ∈ Rc′ , ‖γi‖1 = 1, we must have

‖vi(τ)− u(τ)γi‖1 ≤ ε.

Let γ = [γ1 | · · · |γc]. Now, for any λ ∈ Rc, where ‖λ‖1 = 1

‖v(τ)λ‖1 = ‖[v(τ)− u(τ)γ + u(τ)γ]λ‖1
≤ ‖[v(τ)− u(τ)γ]λ‖1 + ‖u(τ)γλ‖1
≤ ‖v(τ)− u(τ)γ‖1 ‖λ‖1 + ‖u(τ)γλ‖1
≤ ε+ ‖u(τ)γλ‖1 . (47)

Assume on the contrary, that c′ < c. Then, since γ is a c′ × c
matrix, it cannot be full-row rank. Thus, there exists λ0 ∈ Rc,
‖λ0‖1 = 1, such that γλ0 = 0. From (47), we now obtain

‖v(τ)λ0‖1 ≤ ε. (48)

Recalling linearly independency index ζ from (44), one con-
cludes from (48) that ζ(τ) ≤ ε. Remembering that ε is an arbi-
trarily positive number, one could choose ε < ζ0, which would
contradict (45). Thus, c′ ≥ c, and the proof of Proposition 1 is
now complete.

V. LOWER BOUNDS ON THE RANK OF CHAINS

In this section, we obtain lower bounds on the size of a
minimal EGC in a network with dynamics (1), that is, on
rank(A). We recall the following definition from [9], [24].

Definition 7 (Unbounded Interactions Graph): The un-
bounded interactions graph of a chain {A(t)}, H1(V, E1), is a
fixed directed graph such that for every distinct nodes i, j ∈ V ,
(i, j) ∈ E1 if

∞∫
0

aji(t)dt = ∞.

Thus, a link is drawn from i to j if the total influence of
individual i on individual j is unbounded over the infinite time
interval.

Definition 8 (Set-Root): A subset S′ ⊂ V is called a set-root
of H1(V, E1) if for every node i ∈ V , we have i ∈ S′ or there
exists j ∈ S′ such that i is reachable from j.

Theorem 4: Let H1(V, E1) be the unbounded interaction
graph associated with chain {A(t)}. Then, the size of a minimal
EGC of a network with dynamics (1) is lower bounded by the
size of the smallest set-root of H1(V, E1).

Proof: Define a chain {B(t)} from chain {A(t)} as fol-
lows: For every i �= j ∈ V and t ≥ 0, set

bij(t) =

{
aij(t) if (j, i) ∈ E1
0 if (j, i) �∈ E1
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and bii(t) = −
∑

j �=i bij(t) for every i ∈ V and t ≥ 0. Consider
an opinion network with coupling chain {B(t)}

ẏ(t) = B(t)y(t), t ≥ 0 (49)

where y(t) ∈ RN is the opinion vector. Since {B(t)} is an
l1-approximation of {A(t)}, from Proposition 1, the two chains
share the same rank. Consequently, minimal EGC’s of networks
with dynamics (1) and (49) are of the same size. Moreover,
the two chains share a common unbounded interactions graph.
Therefore, it suffices to prove Theorem 4 for network with
dynamics (49). To this aim, we show that every EGC of the
network with dynamics (49) is also a set-root of H1. Assume
on the contrary, that S ⊂ V is an EGC which is not a set-root of
H1. Define

n(S) Δ
= S ∪ {i | i ∈ V, ∃j ∈ S : i is reachable from j in H1}.

Since S is not a set-root, n(S) � V . It is easy to see that there
is no link from n(S) to V \ n(S) in H1. According to the way
that chain {B(t)} was constructed, this means that n(S) has
zero influence on V \ n(S) at any time instant. Thus, since S ⊂
n(S), individuals in S cannot, in general, lead individuals in
V \ n(S) to agreeing on an arbitrary value x∗. For instance,
given a desired consensus value x∗, if the opinions of individ-
uals in V \ n(S) are all initialized at value x∗ + 1, they will
never change and, consequently, they will never converge to x∗.
Thus, S is not an EGC, which completes the proof. �

An important special case of Theorem 4 is described as
follows. Let us first define the continuous time counterpart of
the infinite flow graph of a chain according to [25].

Definition 9 (Infinite Flow Graph): The infinite flow graph
of a chain {A(t)}, H2(V, E2), is a fixed undirected graph such
that for every distinct nodes i, j ∈ V , {i, j} ∈ E2 if

∞∫
0

(aij(t) + aji(t)) dt = ∞.

As a special case of Theorem 4, one obtains the following:
Corollary 1: Rank of a chain is lower bounded by the

number of connected components of its infinite flow graph.

VI. RANK OF TIME-INVARIANT (TI) CHAINS

Let {A(t)} be a TI chain, that is, A(t) = Â, ∀t ≥ 0, where Â
is a fixed matrix with the property that each of its rows adds up
to zero and its offdiagonal elemetns are non-negative. Assume
that rank(Â) and nullity(Â) represent the rank and the nullity
of Â. Notice that roman style is used for matrix operators as
opposed to the chain operators in order to avoid any ambiguity.
For state transition matrix Φ(t, τ) associated with TI chain {Â},
we have

Φ(t, τ) = eÂ(t−τ), t ≥ τ ≥ 0.

Note that Â is marginally stable and has all eigenvalues negative
but one equal to zero with algebraic multiplicity nullity(Â).
Thus, limt−τ→∞ Φ(t, τ) exists and the limit has eigenvalue zero

Fig. 3. Unweighted graphs associated with two TI chains. {1, 4} (left) and
{1, 3, 8} (right) are the smallest set-roots.

with algebraic multiplicity rank(Â) and eigenvalue one with
algebraic multiplicity nullity(Â). Hence

rank(A) = nullity(Â).

Employing a graph-theoretic approach, nullity(Â) is the size
of a minimal set-root of the weighted directed graph whose
Laplacian is Â [26, Cor. 1]. Since an unweighted version
of the graph described serves as the unbounded interactions
graph associated with TI chain {A(t)}, A(t) = Â, ∀t ≥ 0, the
following corollary is implied (see Fig. 3).

Corollary 2: For a TI chain {A(t)}, the lower bound pro-
vided in Theorem 4 is achieved. More specifically, the size of
a minimal EGC of a network with dynamics (1) is equal to the
size of the smallest set-root of the unbounded interactions graph
associated with {A(t)}.

Remember that any TI chain {A(t)} is class-ergodic and the
numbers of ergodic classes provides an upper bound for the size
of a minimal EGC according to Theorem 3. For example, for
the coupling graphs depicted in Fig. 3, the number of ergodic
classes are 4 (left) and 6 (right). The graph interpretation of the
notion of rank explains the following two properties:

1) For any TI chain {A(t)} and α > 0

rank ({αA(t)}) = rank ({A(t)}) .

2) For any two TI chains {A(t)} and {B(t)}

rank({A(t)+B(t)})≤min{rank({A(t)}), rank({B(t)})} .

Remark 5: While Statement 1) seems to hold for any time-
varying chain {A(t)} as well, there exist time-varying chains
{A(t)} and {B(t)} that do not satisfy Statement 2). This means
that more interactions between individuals may surprisingly
increase the size of the minimal EGC of a network. The
following is an example; let:

A(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎣−1 1 0

0 0 0
0 0 0

⎤
⎦ if t ∈ [22k − 1, 22k), k ∈ N

⎡
⎣ 0 0 0
0 −1 1
0 0 0

⎤
⎦ if t ∈ [22k, 22k+1 − 1), k ∈ N

and A(t) = 0 elsewhere. Also let

B(t)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎣ 0 0 0
0 0 0
0 1 −1

⎤
⎦ if t ∈ [22k+1 − 1, 22k+1), k ∈ N

⎡
⎣ 0 0 0
1 −1 0
0 0 0

⎤
⎦ if t ∈ [22k+1, 22k+2 − 1), k ∈ N
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and B(t) = 0 elsewhere. Note that at every time instant, either
A(t) or B(t) is 0. It is easy to see that {A(t)} and {B(t)} are
ergodic chains. More specifically, for every τ ≥ 0, we have

lim
t→∞

ΦA(t, τ) = [0 0 1][1 1 1]′

lim
t→∞

ΦB(t, τ) = [1 0 0][1 1 1]′.

Therefore, rank(A) = rank(B) = 1. However, it can be
shown that rank({A(t) +B(t)}) = 2. More precisely, {1, 3}
forms a minimal EGC of the network with coupling chain
{A(t) +B(t)}.

VII. RANK OF CHAINS IN CLASS P∗

From the fundamental work of Kolmogorov [27], for the
state transition matrix Φ(t, τ), t ≥ τ ≥ 0, associated with an
arbitrary chain {A(t)}, there exists a sequence of stochastic
vectors {π(t)}, called an absolute probability sequence, such
that for every t ≥ τ ≥ 0

π′(τ) = π′(t)Φ(t, τ). (50)

Remember that by a stochastic vector, we mean a vector whose
elements are all non-negative and add up to 1. For the sake of
completeness, we state Kolmogorov’s non-constructive proof
for the existence of an absolute probability sequence as follows.
View Φij(t, τ) in (50) as transition probabilities of a Markov
chain in reverse time. In other words, view sequence {π(t)} as
a backward sequence of stochastic vectors that starts at t = ∞
and ends at t = 0. Note that we still do not know that if such
a backward sequence satisfying (50) exists at all. However,
we do know that for any fixed arbitrary t0 ≥ 0, there exists
a backward sequence of stochastic vectors initialized at t0
satisfying (50) for every t, τ such that t0 ≥ t ≥ τ ≥ 0. Thus, let
{π(t0)(τ)}t0≥τ≥0 represent such a backward sequence. Indeed,
the choice of initial probabilities vector π(t0)(t0) is arbitrary
as long as it is a stochastic vector. Now, given sequential
compactness and using a diagonal argument, we can progres-
sively extract based on the infinite vector sequences associated
with t0 = 1, 2, 3, . . ., a gradually thinning infinite subsequence
of time indices λ1, λ2, λ3, . . ., where limn→∞ λn = ∞, such
that for any i = 1, . . . , N and τ ≥ 0, limn→∞ π

(λn)
i (τ) exists.

Defining πi(τ) as this limit value for every i, an absolute
probability sequence is obtained.

We now state a continuous time version of [10, Def. 3].
Definition 10 (Class P∗, Continuous Time Version): A chain

{A(t)} is said to be in Class P∗ if its associated state transi-
tion matrix Φ(t, τ), t ≥ τ ≥ 0, admits an absolute probability
sequence {π(t)} for which there exists a constant p∗ > 0 such
that π(t) > p∗ for any t ≥ 0.

It is possible to characterize chains of Class P∗ more con-
cretely. To do so, we state the following two lemmas.

Lemma 7: For every τ ≥ 0 and j ∈ V

πj(τ) ≤ inf
t≥τ

{∑
i∈V

Φi,j(t, τ)

}
.

Proof: Obvious, since for every t ≥ τ

πj(τ) = π′(t)Φj(t, τ) =
∑
i∈V

πi(t)Φi,j(t, τ) ≤
∑
i∈V

Φi,j(t, τ).

�
Lemma 8: A chain {A(t)} is in Class P∗ if and only if for

its state transition matrix Φ(t, τ), t ≥ τ ≥ 0, and any j ∈ V

inf
t,τ

{∑
i∈V

Φi,j(t, τ) | t ≥ τ ≥ 0

}
> 0. (51)

Proof: The only if part is an immediate result of Lemma 7.
To prove the if part, let p∗ > 0 be 1/N times the value of the
left-hand side of inequality (51). We now take advantage of the
way an absolute probability sequence can be obtained in [27]
as explained in the beginning of this section. Remembering that
the choice of π(t0)(t0) is arbitrary, set π(t0)

i (t0) = 1/N for any

i ∈ V and t0 ≥ 0. Subsequently, π(λn)
i (λn) = 1/N for every

n. Notice also by definition that (π(λn)(τ))
′
= (π(λn)(λn))

′

Φ(λn, τ) for every n and 0 ≤ τ ≤ λn. Thus

π
(λn)
i (τ) =

1

N

N∑
j=1

Φji(λn, τ)

and consequently

πi(τ) = lim
n→∞

π
(λn)
i (τ) = lim

n→∞

1

N

N∑
j=1

Φji(λn, τ)

≥ 1

N
inf
t,τ

{∑
i∈V

Φi,j(t, τ) | t ≥ τ ≥ 0

}
= p∗.

�
Lemma 8 roughly implies that the coupling chain of a system

is in Class P∗, if and only if the opinion of any individual at any
time continues to have influence on the formation of individu-
als’ opinions at all future times. According to [11, Theor. 6]),
every chain {A(t)} in Class P∗ is class-ergodic, while the
number of ergodic classes is equal to the number of connected
components of the infinite flow graph of {A(t)}. Therefore,
if chain {A(t)} is in Class P∗, the upper bound provided in
Theorem 3 for the size of a minimal EGC of a network with dy-
namics (1) is equal to the lower bound provided in Corollary 1,
leading to the following corollary.

Corollary 3: If {A(t)} is in Class P∗, the size of a minimal
EGC of a network with dynamics (1) is the number of connected
components of the infinite flow graph associated with {A(t)}.

VIII. FULL-RANK CHAINS

Theorem 5: A chain {A(t)} is full-rank, that is, rank(A) =
N if and only if {A(t)} is an l1-approximation of the neutral
chain, that is, the chain of matrix 0.

Proof: The sufficiency is immediately implied using
Proposition 1 and taking into account that the neutral chain is
full-rank. To prove the necessity, assume that rank(A) = N .
Recalling the geometric framework developed in Section III,
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limiting polytope C0 must have N vertices. Letting v1, . . . , vN
be the N vertices of C0, for a permutation σ over {1, . . . , N},
we must have

lim
t→∞

Φ′(t, 0) =
[
vσ(1)| · · · |vσ(N)

]
(52)

since each column of Φ′(t, 0) is a continuous function of t such
that its distance from {v1, . . . , vN} vanishes as t grows large.
From the Jacobi-Liouville formula [28] and using (52), one
concludes

lim
t→∞

exp

⎡
⎣ t∫

0

tr (A(τ)) dτ

⎤
⎦ = lim

t→∞
det (Φ′(t, 0))

= det
(
lim
t→∞

Φ′(t, 0)
)

= det
([
vσ(1)| · · · |vσ(N)

])
(53)

where tr(.) and det(.) denote trace and determinant opera-
tors. respectively. Since v1, . . . , vN are linearly independent,
from (53), one concludes that

∫ t

0 tr(A(τ))dτ , which is always
negative and decreasing, remains bounded as t grows large.
Taking into account that diagonal elements of A(τ) are its only
negative elements, one further obtains

∫∞
0 ‖A(t)‖∞dt < ∞,

which completes the proof. �
Assume that the infinite flow graph of chain {A(t)}, that is,

H2(V, E2), has h2-connected components. Form chain {B(t)},
which is an l1-approximation of {A(t)}, by eliminating all
interactions between distinct connected components. Since the
subchain corresponding to each connected component is full-
rank if and only if it contains a single node, the following
proposition follows from Proposition 1, that provides an upper
bound for rank(A).

Proposition 2: Let {A(t)} be a time-varying chain with
infinite flow graph H2. Then, rank(A) ≤ N − h′

2, where h′
2

is the number of connected components of H2 containing two
or more nodes.

IX. CONCLUSION

We considered a network of multiple individuals with opin-
ions updated via a general time-varying continuous time linear
algorithm. The notion of EGC, an acronym associated with
ÉGC, in the network was defined as follows. An EGC is
a subgroup of individuals who can cooperatively manage to
create a global consensus on any desired opinion in the network
only by adequately setting their initial opinions assuming that
they are cognizant of the coupling chain of the network as well
as the rest of individuals initial opinions. The size of a minimal
EGC can be treated as a characteristic of the coupling chain
of the network. We then introduced an extension of the notion
of rank, from an individual matrix-related notion to one related
to a Markov chain in continuous time. A key result is that the
rank of the coupling chain of a network is also the size of its
minimal EGC. Geometrically and associated with the chain,
one can define a monotone decreasing sequence of convex hulls
(polytopes) generated by an underlying sequence of vertices.

The rank of the chain is the number of linearly independent
vertices in the sequence of polytopes.

A collection of upper and lower bounds on the rank was
also established that helped determine the rank for both time
invariant chains (possibly not in Class P∗), as well as for Class
P∗ chains in the time inhomogeneous case.

From a practical standpoint, this work establishes the rather
intuitive result that the less “natural” dissension that exists in
an opinion network, the easier it is to steer the network toward
global agreement. In cases where an “average” amount of
natural dissonance exists, then the theory points to the need to
minimally “infiltrate” identifiable dissenting clusters and work
from the inside so to speak to steer the global opinion to a
consensus. Success in doing so hinges on an ability to enlist key
individuals’ cooperation given that they must act as a “grand
coalition” of key individuals. This, in turn, opens the door
to games over opinion networks where key individuals might
choose to break up into smaller coalitions and work toward con-
flicting goals. This will be the subject of future work. Finally,
developing simple algorithms to identify key individuals in an
opinion network is another direction for future research.
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