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Network Abstraction With Guaranteed
Performance Bounds
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Abstract—A proper abstraction of a large-scale linear
consensus network with a dense coupling graph is one
whose number of coupling links is proportional to its num-
ber of subsystems and its performance is comparable to the
original network. Optimal design problems for an abstracted
network are more amenable to efficient optimization algo-
rithms. From the implementation point of view, maintaining
such networks are usually more favorable and cost-effective
due to their reduced communication requirements across
a network. Therefore, approximating a given dense linear
consensus network by a suitable abstract network is an im-
portant analysis and synthesis problem. In this paper, we
develop a framework to compute an abstraction of a given
large-scale linear consensus network with guaranteed per-
formance bounds using a nearly linear time algorithm. First,
the existence of abstractions of a given network is proven.
Then, we present an efficient and fast algorithm for com-
puting a proper abstraction of a given network. Finally, we
illustrate the effectiveness of our theoretical findings via
several numerical simulations.

Index Terms—Linear consensus networks, multi-agent
systems, network abstraction, network analysis and con-
trol, performance measures, randomized algorithms.

I. INTRODUCTION

R EDUCING design complexity in interconnected networks
of dynamical systems by means of abstraction is central

in several real-world applications [1]–[6]. Various notions of
abstractions for dynamical systems have been widely used by
researchers in the context of control systems in past decades, see
[7]–[9] and references in there, where the notion of reduction
mainly implies projecting dynamics of a system to lower dimen-
sional state spaces. In this paper, we employ a relevant notion of
abstraction in the context of interconnected dynamical network:
for a given dynamical network that is defined over a coupling
graph, find another dynamical system whose coupling graph
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is significantly sparser and its performance quality remains
close to that of the original network. In this definition, abstrac-
tion can be regarded as a notion of network reduction. There are
several valid reasons why reduction in this sense is useful in de-
sign, maintenance, and implementation of dynamical networks.
Real-time generation of state estimation in large-scale dynam-
ical networks can be done much more efficiently and faster if
proper abstractions are utilized. Optimal control problems that
involve controller design, feedback gain adjustments, rewiring
existing feedback loops, etc., are more amenable to efficient
computational tools that are specifically tailored for optimiza-
tion problems with sparse structures. In security- or privacy-
sensitive applications such as formation control of group of
autonomous drones, it is usually required to minimize com-
munication requirements across the network to reduce the risk
of external intrusions. In power network applications, network
authorities periodically provide access to their network data
and parameters for academic (or public) studies and evalua-
tions. In order to reduce possibility of planned malicious at-
tacks, network authorities can perform abstractions in order to
hide actual values of parameters in their networks by preserving
all other important characteristics of the network that interest
researchers.

The goal of this paper is to address the abstraction problem
for the class of linear consensus networks. In [1], we introduce a
class of operators, so-called systemic performance measure, for
linear consensus networks that provides a unified framework
for network-wide performance assessment. Several existing
and popular performance measures in the literature, such as
H2 and H∞ norms of a consensus network from a disturbance
input to its output, are examples of systemic performance
measures. This class of operators is obtained through our close
examination of functional properties of several existing gold
standard measures of performance in the context of network
engineering and science. An important contribution of this
reference paper is that it enables us to optimize the performance
of a consensus network solely based on its intrinsic features.
The authors formulate several optimal design problems, such
as weight adjustment as well as rewiring of coupling links, with
respect to this general class of systemic performance measures
and propose efficient algorithms to solve them. In [10] and [11],
we quantify several fundamental tradeoffs between an H2-
based performance measure and sparsity measures of a linear
consensus network. The problem of sparse consensus network
design has been considered before in [5] and [12]–[13], where
they formulate an �0-regularized H2 optimal control problem.
The main common shortcoming of existing works in this area
is that they are heavily relied on computational tools with no
analytical performance guarantees for the resulting solution.
More importantly, the proposed methods in these papers mainly
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suffer from high computational complexity as network size
grows.

For a given linear consensus network with an undirected con-
nected graph, the network abstraction problem seeks to construct
a new network with a reasonably sparser graph compared to the
original network such that the dynamical behavior of the two
networks remains similar in an appropriately defined sense. We
develop a methodology that computes abstractions of a given
consensus network using a nearly linear time Õ(m)1 algorithm
with guaranteed systemic performance bounds, where m is the
number of links. Unlike other existing work on this topic in the
literature, our proposed framework

1) works for a broad class of systemic performance mea-
sures including H2-based performance measures,

2) does not involve any sort of relaxations such as �0 to �1 ,2

3) provides guarantees for the existence of a sparse solution,
4) can partially sparsify predetermined portions of a given

network, and most importantly,
5) gives guaranteed levels of performance.

While our approach is relied on several existing works in alge-
braic graph theory [14], [15], our control theoretic contributions
are threefold. First, we show that there exist proper abstractions
for every given linear consensus network. Second, we develop a
framework to compute a proper abstraction of a network using
a fast randomized algorithm. One of the main features of our
method is that while the coupling graph of the abstracted net-
work is a subset of the coupling graph of the original network,
the link weights (the strength of each coupling) in the sparsified
network are adjusted accordingly to reach predetermined levels
of systemic performance. Third, we prove that our method can
also be applied for partial abstraction of large-scale networks,
which means that we can abstract a prespecified subgraph of
the original network. This is practically plausible as our algo-
rithm can obtain an abstraction using only spatially localized
information. Moreover, this allows parallel implementation of
the abstraction algorithm in order to achieve comparably lower
time complexity.

Some of the proofs are omitted due to space limitations; we
refer an interested reader to [16].

II. NOTATION AND PRELIMINARIES

The set of real, positive real, and strictly positive real num-
bers are represented by R, R+ , and R++ , respectively. A matrix
is generally represented by an upper case letter, say X = [xij ],
where xij is the (i, j) element of matrix X and XT indicates its
transposition. We assume that 1n and In denote the n × 1 vector
of all ones and the n × n identity matrix, respectively. The cen-
tering matrix is defined by Mn = In − 1

n Jn in which Jn is the
n × n matrix of all ones. Notation X � Y is equivalent to ma-
trix X − Y being positive semidefinite. A graph is represented
by G = (V, E , w), where V is the set of nodes, E ⊂ V × V is
the set of links, and w : V × V → R+ is the weight function.
The value of the weight function is zero for e ∈ V × V \E and
positive for e ∈ E . The weighted degree of node i ∈ V is defined

1We use Õ(.) to hide poly log log terms from the asymptotic bounds.
Thus, f (n) ∈ Õ (g(n)) means that there exists c > 0 such that f (n) ∈
O (g(n) logc g(n)).

2We discuss some of the shortcomings of the �0 /�1 -regularization-based
sparsification methods in Section VIII.

by

di :=
∑

e={i,j}∈E
w(e). (1)

The neighborhood of node i is denoted by set N (i) that consists
of all adjacent nodes to i and its cardinality |N (i)| is equal to
the number of neighbors of node i. In unweight graphs, |N (i)|
is equal to the degree of node i. The adjacency matrix A = [aij ]
of graph G is defined by setting aij = w(e) if e = {i, j} ∈ E ,
and aij = 0 otherwise. The Laplacian matrix of graph G with n
nodes is defined by L := diag[d1 , . . . , dn ] − A.

An n-by-m oriented incidence matrix E = [eij ] for 1 ≤ i ≤
n and 1 ≤ j ≤ m can be formed by assigning an arbitrary di-
rection for every link of G, labeling every link by a number
1 ≤ j ≤ m, and letting eij = 1 whenever node i is the head of
(directed) link j, eij = −1 if node i is the tail of (directed) link
j, and eij = 0 when link j is not attached to node i for all pos-
sible orientations of links. The weight matrix W = [wkk ] is the
m-by-m diagonal matrix with diagonal elements wkk = w(ek )
for 1 ≤ k ≤ m. It follows that L = EWET.

Assumption 1: All graphs in this paper are assumed to be
finite, simple, undirected, and connected.

According to this assumption, every considered Laplacian
matrix in this paper has exactly n − 1 positive eigenvalues and
one zero eigenvalue, which allow us to index them in ascending
order 0 = λ1 ≤ λ2 ≤ · · · ≤ λn . The set of Laplacian matrices
of all connected weighted graphs over n nodes is represented by
Ln . The Moore–Penrose pseudo-inverse of L is denoted by L† =
[l†j i ], which is a square, symmetric, doubly centered, and positive
semidefinite matrix. The corresponding resistance matrix R =
[rij ] to Laplacian matrix L is defined by setting rij = l†ii +
l†jj − 2l†ij in which rij is called the effective resistance between
nodes i and j. Moreover, we denote the effective resistance of
link e = {i, j} by r(e) = rij = rji . The �0 sparsity measure of
matrix A = [aij ] ∈ Rn×n is defined by

‖A‖�0 := card
{
(i, j)

∣∣ aij 	= 0
}
. (2)

The S0,1 sparsity measure of matrix A is defined by

‖A‖S0 , 1 := max
{

max
1≤i≤n

‖A(i, .)‖0 , max
1≤j≤n

‖A(., j)‖0

}
(3)

where A(i, .) represents the ith row and A(., j) the jth column
of matrix A. The value of the S0,1-measure of a matrix is the
maximum number of nonzero elements among all rows and
columns of that matrix [17].

III. PROBLEM STATEMENT

A. Network Model

We consider a class of consensus networks that consist of
a group of subsystems whose state variables xi , control inputs
ui , and output variables yi are scalar and their dynamics evolve
with time according to

ẋi(t) = ui(t) + ξi(t) (4)

yi(t) = xi(t) − x̄(t) (5)

for all i = 1, . . . , n, where xi(0) = xi
0 is the initial condi-

tion and x̄(t) = 1
n

(
x1(t) + · · · + xn (t)

)
is the average of all

states at time instant t. The impact of the uncertain environ-
ment on each agent’s dynamics is modeled by the exogenous
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noise/disturbance input ξi . By applying the following linear
feedback control law to the agents of this network

ui(t) =
n∑

j=1

kij

(
xj (t) − xi(t)

)
(6)

where kij is the feedback gain between subsystems i and j, the
closed-loop dynamics of network (4)–(6) can be written in the
following compact form:

N(L) :
{

ẋ(t) = −Lx(t) + ξ(t)
y(t) = Mnx(t) (7)

with initial condition x(0) = x0 , where x, ξ, and y denote the
state vector of the entire network, the exogenous disturbance
input, and the output vector of the network, respectively. The
Laplacian matrix L = [lij ] is defined by

lij :=

{−kij if i 	= j

ki1 + · · · + kin if i = j
. (8)

The coupling graph of the consensus network (7) is a graph
G = (V, E , w) with node set V = {1, . . . , n}, link set

E =
{
{i, j}

∣∣∣ ∀ i, j ∈ V : kij 	= 0
}

(9)

and weight function

w(e) =

⎧
⎨

⎩

kij if e = {i, j} ∈ E

0 if e /∈ E
. (10)

One may verify that the Laplacian matrix of graph G is equal
to L.

Assumption 2: All feedback gains (weights) satisfy the fol-
lowing properties for all i, j ∈ V:

(i) non-negativity: kij ≥ 0,
(ii) symmetry: kij = kji , and

(iii) simpleness: kii = 0.
Property (ii) implies that feedback gains are symmetric and

(iii) means that there is no self-feedback loop in the network.
Assumption 3: The coupling graph G of the consensus net-

work (7) is time-invariant.
Based on Assumption 3, the corresponding eigenvector to the

only marginally stable mode of the network is 1n . This mode is
unobservable from the performance output as the output matrix
of the network satisfies Mn1n = 0.

B. Homogeneous Systemic Performance Measures

A systemic measure in this paper refers to a real-valued oper-
ator over the set of all consensus networks governed by (7) with
the purpose of quantifying performance of this class of networks
in the presence of exogenous uncertainties. Since every network
with dynamics (7) is uniquely determined by its Laplacian ma-
trix, it is reasonable to define a systemic performance measure
as an operator on set Ln .

Definition 1: An operator ρ : Ln → R+ is called a homoge-
neous systemic measure of order −α, where α > 0, if it satisfies
the following properties for all matrices in Ln .

1) Homogeneity: For all κ > 1

ρ(κL) = κ−αρ(L).

Fig. 1. Venn diagram that shows the relationship among sets Ω, Ωs,
and Ωh . The set of general systemic measures Ω is a superset of both
the set of homogeneous systemic measures Ωh and the set of spectral
systemic measures Ωs . While the intersection of sets Ωs and Ωh is
nonempty, there are some systemic measures that belong only to one
of these sets.

2) Monotonicity: If L2 � L1 , then

ρ(L1) ≤ ρ(L2).

3) Convexity: For all 0 ≤ c ≤ 1

ρ(cL1 + (1 − c)L2) ≤ cρ(L1) + (1 − c)ρ(L2).

The set of all homogeneous systemic performance measures
is denoted by Ωh . We adopt an axiomatic approach to intro-
duce and categorize a general class of performance measures
that captures the quintessence of a meaningful measure of per-
formance in large-scale dynamical networks [18]. Property 1
implies that intensifying the coupling weights by ratio κ > 1
results in κα times better performance. Property 2 guarantees
that strengthening couplings in a consensus network never wors-
ens the network performance with respect to a given systemic
measure. The monotonicity property induces a partial ordering
on all linear consensus networks with dynamics (7). Adding new
coupling links or strengthening the existing couplings will result
in better performance. Property 3 is imposed for the pure pur-
pose of having favorable (convex) network design optimization
problems.

The class of systemic performance measures can be classified
based on their functional properties according to Definition 1.
Let us denote the set of spectral systemic performance measures
by Ωs . This class consists of all measures that satisfy properties
2, 3, and orthogonal invariance.3 We refer to [19] for a compre-
hensive study of this class of performance measures. It is proven
that all measures in Ωs depend only on Laplacian eigenvalues.
Let us represent the set of all general systemic performance
measures that only satisfy properties 2 and 3 by Ω. Fig. 1 shows
the relationship among the sets of spectral, homogeneous, and
general systemic performance measures.

Definition 2: For a given linear consensus network N(L)
endowed with a homogeneous systemic measure ρ : Ln → R+
of order −α, its corresponding normalized performance index
is defined by Πρ(L) := α

√
ρ(L).

C. Network Abstraction Problem

Our goal is to develop a framework to compute an abstraction
of a given linear consensus network with predetermined levels
of performance and sparsity (i.e., link reduction).

3A systemic measure is orthogonally invariant if ρ(L) = ρ(ULU T) for every
orthogonal matrix U for which UU T = U TU = I .
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Definition 3: Let us consider network N(L) that is governed
by (7). For a properly chosen pair of design parameters d ∈ R++
and ε ∈ (0, 1), another N(Ls) is said to be an (ε, d)-abstraction
of N(L) if and only if

(i) N(Ls) has at most dn/2 feedback links; and
(ii) N(Ls) is an ε-approximation of N(L) in the following

sense:
∣∣∣∣
Πρ(L) − Πρ(Ls)

Πρ(Ls)

∣∣∣∣ ≤ ε (11)

for every homogeneous systemic performance measure ρ :
Ln → R+ .

Property (i) implies that the average number of neighbors for
every node in N(Ls) is less than d, i.e.,

d̄ =
1
n

n∑

i=1

|N (i)| = 2
|Es |
n

≤ d

where N (i) and Es denote the set of all adjacent nodes to i and
the set of all links in the abstraction, respectively. Therefore,
one can think of design parameter d as an upper bound on the
desired average number of neighbors of nodes in the abstracted
network, which is independent of the network size. For property
(ii), inequality (11) indicates that the resulting abstracted net-
work N(Ls) has guaranteed performance bounds with respect
to N(L). The design constant ε is referred to as permissible
performance loss parameter.

IV. EXAMPLES OF RELEVANT HOMOGENEOUS SYSTEMIC

PERFORMANCE MEASURES

We now present some existing and widely used systemic
performance measures for linear consensus networks; a list of
these measures are summarized in Table I.

A. Sum of Homogeneous Spectral Functions

This class of performance measures is generated by forming
summation of a given function of Laplacian eigenvalues. For a
given matrix L ∈ Ln , suppose that ϕ : R+ → R+ is a decreas-
ing homogeneous convex function. Then, the following spectral
function:

ρ(L) =
n∑

i=2

ϕ(λi) (12)

is a homogeneous systemic measure [19]. Moreover, if ϕ is
a homogeneous function of order −α where α > 1, then its
corresponding normalized index

Πρ(L) =

(
n∑

i=2

ϕ(λi)

) 1
α

(13)

is also a homogeneous systemic performance measure [19].
Some notable examples of this class of measures are discussed
in the following parts.

1) Spectral Riemann Zeta Measures: For a given network
(7), its corresponding spectral Riemann zeta function of order
q ≥ 1 is defined by

ζq (L) :=
( n∑

i=2

λ
−q
i

)1/q

(14)

where λ2 , . . . , λn are eigenvalues of L [20]. According to As-
sumption 3, all Laplacian eigenvalues are strictly positive and,
as a result, function (14) is well-defined. According to the re-
sult presented in Section IV-A, since ϕ(λ) = λ−q for q ≥ 1 is
a decreasing homogeneous convex function, the spectral func-
tion (14) is a homogeneous systemic performance measure. The
homogeneous systemic performance measure 1

2 ζ1(L) is equal
to the H2-norm squared of a first-order consensus network (7)
and 1√

2
ζ

2
(L) equal to theH2-norm of a second-order consensus

model of a network of multiple agents (c.f., [10]).
2) Gamma Entropy: The notion of gamma entropy arises

in various applications such as the design of minimum entropy
controllers and interior point polynomial-time methods in con-
vex programming with matrix norm constraints [21]. As shown
in [22], the notion of gamma entropy can be interpreted as
a performance measure for linear time-invariant systems with
random feedback controllers by relating the gamma entropy to
the mean-square value of the closed-loop gain of the system.
The γ-entropy of network (7) is defined as

Iγ (L) :=

⎧
⎪⎪⎨

⎪⎪⎩

−γ 2

2π

∫∞
−∞ log det

(
I − γ−2G(jω)G∗(jω)

)
dω

for γ ≥ ‖G‖H∞

∞ otherwise

where G(jω) is the transfer matrix of network (7) from ξ to y
[22]. In [19], it is shown that the value of the γ-entropy for a
given linear consensus network (7) can be explicitly computed
in terms of Laplacian spectrum as follows:

Iγ (L) =

⎧
⎪⎨

⎪⎩

n∑

i=2

fγ (λi) γ ≥ λ−1
2

∞ otherwise

(15)

where fγ (λi) = γ2
(
λi −

(
λ2

i − γ−2
) 1

2

)
. Furthermore, the γ-

entropy Iγ (L) is a homogeneous systemic performance mea-
sure.

B. Uncertainty Volume

The uncertainty volume of the steady-state output covariance
matrix of network (7) is defined by

|Σ| := det
(
Y∞ +

1
n

Jn

)
(16)

in which Y∞ = limt→∞ E
[
y(t)yT(t)

]
. This quantity is widely

used as an indicator of the network performance [2], [23]. Since
y(t) is the error vector that shows the distance from consensus,
the quantity (16) can be interpreted as the volume of the steady-
state error ellipsoid. It is straightforward to show this measure
satisfies all properties of Definition 1.

C. Hankel Norm

The Hankel norm of network (7) and transfer matrix G(jω)
from ξ to y is defined as the L2-gain from past inputs to the
future outputs, i.e.,

‖G‖2
H := sup

ξ∈L2 (−∞,0]

∫∞
0 yT(t)y(t)dt
∫ 0
−∞ ξT(t)ξ(t)dt

.

The value of the Hankel norm of network (7) can be equivalently
computed using the Hankel norm of its disagreement form [3]
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TABLE I
SOME IMPORTANT EXAMPLES OF HOMOGENEOUS SYSTEMIC PERFORMANCE MEASURES

Homogeneous systemic performance measure Symbol Representation

Spectral Riemann zeta function ζq (L)
( n∑

i=2

λ
−q
i

)1/q

Gamma entropy Iγ (L) γ2
n∑

i=2

(
λi −
(
λ2

i − γ−2
) 1

2
)

System Hankel norm η(L)
1
2

λ−1
2

Hardy–Schatten or Hp system norm θp (L)

{
1
2π

∫ ∞

−∞

n∑

k=1

σk (G(jω))p dω

}1/p

= α0

(
Tr
(
L†
)p−1
) 1

p

Local deviation error for first-order consensus networks Δ(L) 1
2

∑n

i=1 di
−1

Local deviation error for second-order consensus networks with β > 0 Υ(L) 1
2β

∑n

i=1 di
−2

H2 -norm of second-order consensus networks with β > 0 Θ2 (L)
(

1
2β

∑n

i=1 λi
−2
)1/2

that is given by

ẋd(t) = −Ld xd(t) + Mn ξ(t), (17)

y(t) = Mn xd(t) (18)

where the disagreement vector is defined by xd(t) := Mn x(t).
The disagreement network (17), (18) is stable as the real part
of every eigenvalue of the state matrix −Ld = −(L + 1

n Jn ) is
strictly negative. One can verify that the transfer matrices from
ξ(t) to y(t) in both realizations are identical. Therefore, the Han-
kel norm of the system from ξ(t) to y(t) in both representations
is well-defined and equal and is given by [24]

η(L) := ‖G‖H =
√

λmax(PQ) (19)

where P and Q are the controllability and observability Gramian
matrices of (17)-(18), respectively.

It is shown in [19] that the value of the Hankel norm
of network (7) is equal to η(L) = 1

2 λ−1
2 . One can verify

that this measure is a homogeneous systemic performance
measure.

Remark 1: One may also consider the sum of the k largest
eigenvalues of L† as a performance measure. This is equivalent
to evaluate the k slowest modes of the network, which are the
most energetic modes. This measure satisfies properties of Def-
inition 1 as it is convex and symmetric with respect to Laplacian
eigenvalues (c.f., [25, Ch. 5.2] and [26]).

D. Hardy–Schatten or Hp System Norms

The Hp -norm of networks (7) for 2 ≤ p ≤ ∞ is defined by

‖G‖Hp
:=

(
1
2π

∫ ∞

−∞

n∑

k=1

σk (G(jω))p dω

) 1
p

(20)

where G is the transfer matrix from ξ(t) to y(t) and σk (jω)
for k = 1, . . . , n are singular values of G(jω). To ensure well-
definedness of performance measure (20), the marginally stable
mode of the network must be unobservable through the output.
Thus, this performance measure remains well-defined as long
as the coupling graph of the network stays connected. This class

of system norms captures several important performance and
robustness features of linear control systems. For instance, a
direct calculation reveals that the H2-norm of network (7) is

‖G‖H2 =

(
1
2

n∑

i=2

λ−1
i

) 1
2

. (21)

This system norm quantifies the quality of noise propagation
throughout the network [11]. The H∞-norm of a network is an
input–output system norm and its value for network (7) is

‖G‖H∞ = λ−1
2 (22)

where λ2 is known as the algebraic connectivity of the network
[3]. The value of H∞-norm of network (7) can be interpreted
as the worst attainable performance for all square integrable
disturbance inputs.

In [19], Siami and Motee prove that the Hp -norm of a given
network N(L) is given by

θp(L) := ‖G‖Hp
= α0

(
ζp−1(L)

)1− 1
p

(23)

in which α−1
0 = p

√
−B( p

2 ,− 1
2 ) and B : R × R → R is the well-

known Beta function.4 Moreover, this measure is a homoge-
neous systemic performance measure for all 2 ≤ p ≤ ∞.

E. Local Deviation Error

In network (7), the local deviation of subsystem i is equal to
the deviation of the state of subsystem i from the weighted aver-
age of states of its immediate neighbors, which can be formally
defined by

εi(t) := xi(t) −
1
di

∑

e={i,j}∈E
w(e) xj (t). (24)

4B(x, y) =
∫ 1

0
tx−1 (1 − t)y−1 dt for Re{x}, Re{y} > 0.
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The expected cumulative local deviation is then defined by

Δ(L) = lim
t→∞

E

[
n∑

i=1

εi(t)2

]
(25)

with respect to input ξ being a white noise process with identity
covariance. The notion of local deviation can be extended and
defined for velocity variables in the second-order consensus
network (87)-(88) (c.f., [10]) as follows:

ςi(t) := vi(t) −
1
di

∑

e={i,j}∈E
w(e) vj (t) (26)

that is equal to the deviation of the velocity of subsystem i from
the weighted average of velocities of its neighbors. The expected
cumulative local deviation is then given by

Υ(L) = lim
t→∞

E

[
n∑

i=1

ςi(t)2

]
(27)

where it is assumed that input ξ in network model (87)-(88) is a
white noise process with identity covariance.

Theorem 1: The operators Δ,Υ : Ln → R+ defined by (25)
and (27) are homogeneous systemic performance measures.
Moreover, they can also be characterized as

Δ(L) =
1
2

n∑

i=1

di
−1 (28)

and

Υ(L) =
1
2β

n∑

i=1

di
−2 (29)

in which di is the degree of node i ∈ V .
Proof: Let us define the total local deviation at time t by

εtotal(t) :=
∑

i∈V
εi(t)2 . (30)

We reformulate (24) as

εi(t) = d−1
i

⎛

⎝dixi(t) −
∑

e={i,j}∈E
w(e) xj (t)

⎞

⎠

= d−1
i

∑

e={i,j}∈E
w(e) (xi(t) − xj (t)) . (31)

Therefore, we get ε(t) = diag
[
d−1

1 , . . . , d−1
n

]
Lx(t) where ε(t)

is concatenation of elements εi(t) for i = 1, . . . , n. Also, we
can rewrite (30) as follows:

εtotal(t) = εT(t)ε(t) = xT(t)Qx(t)

with Q = L diag
[
d−2

1 , . . . , d−2
n

]
L. Thus, according to [11,

Th. 5], the steady-state of εtotal is given by

Δ(L) = lim
t→∞

E [εtotal(t)] =
1
2

Tr
(
L†Q

)
=

1
2

∑

i∈V
di

−1 . (32)

Now, we show this measure is a homogeneous systemic perfor-
mance measure. We first show that (32) has property 1, which
means

Δ(κL) =
1
2

∑

i∈V
(κdi)

−1 = κ−1Δ(L).

Fig. 2. Two isospectral graphs with six nodes [28].

Furthermore, it is monotone, because if L1 � L2 , then we have
eT
i L1ei ≤ eT

i L2eiwhere ei for i = 1, . . . , n are the standard
basis for the n-dimensional Euclidean space. Therefore, we
have L1(i, i) ≤ L2(i, i) that guarantees the monotonicity of Δ.
Moreover, its convexity follows from convexity of function 1/x
for all x ∈ R+ . Consider two Laplacian matrices L1 and L2

with node degrees d
(1)
i and d

(2)
i , respectively, for i = 1, . . . , n.

Then, we get

Δ(cL1 + (1 − c)L2) =
∑

i∈V

1

c d
(1)
i + (1 − c) d

(2)
i

≤
∑

i∈V

(
c

d
(1)
i

+
1 − c

d
(2)
i

)

= cΔ(L1) + (1 − c)Δ(L2)

for all 0 ≤ c ≤ 1. This completes the proof of the first part. For
the second part, let us define the total local deviation error at
time t by

ςtotal(t) :=
∑

i∈V
ςi(t)2 . (33)

We similarly reformulate (26) as

ςi(t) = d−1
i

∑

e={i,j}∈E
w(e) (vi(t) − vj (t)) .

Therefore, we have ς(t) = diag
[
d−1

1 , . . . , d−1
n

]
Lv(t) where

ς(t) is concatenation of elements ςi(t) for all 1 ≤ i ≤ n. More-
over, we can rewrite (33) as follows:

ςtotal(t) = ςT(t)ς(t) = vT(t)Qv(t) (34)

where Q is given by Q = L diag
[
d−2

1 , . . . , d−2
n

]
L. Therefore,

the steady-state of ςtotal can be characterized as

Υ(L) = lim
t→∞

E [ςtotal(t)] =
1
2β

Tr
(
(L†)2Q

)
=

1
2β

∑

i∈V
di

−2 .

(35)
This measure is a homogeneous systemic performance measure.
It is straightforward to show that (35) satisfies property 1 by
verifying that Υ(κL) = 1

2β

∑
i∈V (κdi)

−2 = κ−2Υ(L).
It is monotone, as if L1 � L2 , then we have eT

i L1ei ≤
eT
i L2ei. As a result, it follows that L1(i, i) ≤ L2(i, i) that guar-

antees the monotonicity of Υ. Finally, its convexity can be con-
cluded from convexity of function 1/x2 for all x ∈ R+ . �

Remark 2: For first-order consensus network (7) that is de-
fined over d-regular coupling graphs, the corresponding mi-
croscopic measure (28) scales linearly with network size. For
regular lattices that are d-regular graphs, our result assumes the
reported result of [27] as its special case.
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Remark 3: Fig. 2 shows example of two isospectral5 graphs
that are not isometric.6 While the value of a spectral systemic
performance measure is equal for both graphs, the value of an ex-
pected cumulative local deviation measure is different for each
of these graphs and depends on their specific interconnection
topology. This simple observation implies that systemic perfor-
mance measures (28) and (29) are suitable tools to differentiate
among networks with isospectral coupling graphs.

V. ABSTRACTION WITH GUARANTEED BOUNDS

In this section, we develop a fast abstraction algorithm for the
class of linear consensus networks (7) with guaranteed bounds
with respect to the class of homogeneous systemic performance
measures.

A. Intrinsic Tradeoffs on the Best Achievable
Abstractions

The abstraction goals are to reduce the number of feedback
links while preserving a desired level of performance. From
notation (3), one can easily verify that the value of S0,1-measure
is equal to the maximum of |N (i)| for all nodes i = 1, . . . , n,
which makes it a suitable surrogate for design parameter d. The
next result reveals an inherent interplay between sparsity and
performance.

Theorem 2: For a given network (7) that is endowed with
a homogenous systemic performance measure ρ : Ln → R+ of
order−α, suppose that w∗ = maxe∈E w(e). Then, there are fun-
damental tradeoffs between normalized performance and graph
sparsity measures in the following sense:

Πρ(L) ‖A‖�0 ≥ 2�∗(n − 1) (36)

and

Πρ(L) ‖A‖S0 , 1 ≥ 2�∗ (37)

when n > 2, in which A is the adjacency matrix of the coupling
graph and �∗ = w−1

∗ Πρ(LKn
), where LKn

is the Laplacian ma-
trix of the unweighted complete graph.

The monotonicity property of a systemic performance mea-
sure implies that link removal will lead to performance deteri-
oration. Theorem 2 quantifies this inherent interplay by saying
that sparsity and performance cannot be improved indefinitely
both at the same time. As we will see in the following section,
this is exactly why we need to perform reweighing after the link
elimination procedure in order to achieve an approximation that
meets (11).

B. Existence and Algorithms

The next theorem enables us to harness the monotonicity
property of homogeneous systemic measures in our network
approximations.

Theorem 3: Suppose that two linear consensus networks
N(L) and N(Ls) are endowed with a homogeneous systemic
performance measure ρ : Ln → R+ of order −α. For a given
constant ε ∈ (0, 1), the two networks are ε-approximation of
each other, i.e., property (11) holds, if and only if their state

5Two graphs are called isospectral if and only if their Laplacian matrices have
the same multisets of eigenvalues.

6This means that their adjacency matrices are not permutation-similar.

matrices satisfy

(1 − ε)L � Ls � (1 + ε)L. (38)

Proof: According to the monotonicity and homogeneity
properties of system measures, it follows that if (38) holds then
we have

(1 + ε)−αρ(L) ≤ ρ(Ls) ≤ (1 − ε)−αρ(L). (39)

Therefore, according to (39) and (11), N(Ls) is an
ε-approximation of N(L). Let us consider the following
measures:

ρv (L) = vTL†v (40)

for all v ∈ Rn . This operator is a homogeneous systemic per-
formance measure of order −1. For all v /∈ Span{1}, inequality
(11) yields

−ε ≤ ρv (L) − ρv (Ls)
ρv (Ls)

≤ ε.

Thus, it follows that

(1 + ε)−1 ≤ vTL†
sv

vTL†v
≤ (1 − ε)−1 . (41)

Since vTL†v > 0, inequalities (41) can be rewritten as

(1 + ε)−1vTL†v ≤ vTL†
sv ≤ (1 − ε)−1vTL†v. (42)

We know that L and Ls are Laplacian matrices and (42) holds
for all v /∈ Span{1}; therefore, we get

(1 + ε)−1L† � L†
s � (1 − ε)−1L†.

This inequality can be rewritten to obtain the desired result

(1 − ε)L � Ls � (1 + ε)L.

The result of the above-mentioned theorem is crucial as it
enables us to take advantage of monotonicity property of sys-
temic performance measures in our approximations. For two
given networks N(L1) and N(L2), inequality ρ(L2) ≤ ρ(L1)
can be realized through several possible scenarios; for example,
network N(L2) can be constructed by

1) adding new weighted edges to the coupling graph of net-
work N(L1),

2) increasing weights of some of the existing links in net-
work N(L1), and

3) rewiring topology of network N(L1) while ensuring
L1 � L2 .

The next result proves the existence of an abstraction for every
given linear consensus network.

Theorem 4: Suppose that a network N(L) with coupling
graph G = (V, E , w) endowed with a homogeneous systemic
performance measure ρ : Ln → R+ of order −α and a design
parameter d > 2 are given. Then, it is possible to construct
another network N(Ls) with coupling graph Gs = (V, Es , ws)
such that

1) N(Ls) is a (
√

8d
d+2 , d)-abstraction of network N(L); and

2) Es ⊂ E .
Proof: It is well-known that the characteristic polynomial

of A + vvT can be computed based on the characteristic
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polynomial7 of A, its eigenvalues μi , and eigenvectors ui as
follows:

PA+vvT (x) = PA (x)

(
1 −
∑

i

〈v, ui〉2
x − μi

)

in which 〈v, ui〉 := vTui . Moreover, we know that the eigenval-
ues of A + vvT interlace those of A. Batson et al. [15] suggest a
framework that provides intuition as to where these new eigen-
values are located. If we start with an empty graph on n nodes,
then after M = �d(n − 1)/2� iterations of choosing links from
the original graph and adjusting its weight, it is shown that
the eigenvalues of the resulted graph are controlled by main-
taining two barrier potential functions. According to [15, Th.
1.1], coupling graph G = (V, E , w) has a weighted subgraph
Ĝ = (V, Ê , ŵ) with |Ê | = �d(n − 1)/2� that satisfies

L � LĜ �
(

1 +
√

d/2
1 −
√

d/2

)2

L (43)

where LĜ is the Laplacian matrix of graph Ĝ. We define Gs =
(V, Ê , ws) by its Laplacian matrix, which is given by

Ls :=
(1 −

√
d/2)2

1 + d/2
LĜ . (44)

Therefore, according to (43) and (44), it follows that
(

1 −
√

2d

d/2 + 1

)
L � Ls �

(
1 +

√
2d

d/2 + 1

)
L. (45)

Using (45) and Theorem 3, it yields that N(Ls) is a (
√

2d
d/2+1 , d)-

abstraction of N(L). Since Es = Ê and the fact that Ê is obtained
by taking samples from E , one concludes that Es ⊂ E . �

In our next result, we show that every consensus network has a
sparsification such that 1) it yields a better systemic performance
than the original network, and 2) the total weight sum of the
coupling graph of the spars network is controlled, i.e., it is less
than a constant multiple, which is independent of the network
size, of the total weight sum of the original network.

Proposition 1: For a given consensus network N(L) with
coupling graph G = (V, E , w) and every d > 2, there ex-
ists a consensus network N(Ls) with coupling graph Gs =
(V, Es , ws) that has at most dn/2 links and Es ⊂ E . Moreover,
we have

1) the total weight of coupling graph of N(Ls) is controlled,
i.e.,

∑

e∈Es

ws(e) ≤
(√

2d + 2√
2d − 2

)2∑

e∈E
w(e). (46)

2) N(Ls) has a superior performance with respect to N(L),
i.e., ρ (Ls) ≤ ρ (L) for every homogeneous systemic per-
formance measure ρ : Ln → R+ .

Remark 4: Proposition 1 demonstrates a tradeoff between
the largest possible number of links in an abstraction, i.e., upper

7The characteristic polynomial of matrix A ∈ Rn×n is defined by

pA (t) = det (tIn − A) .

bound of |Es |, and the best achievable ratio of the total weights,
i.e., upper bound of

∑
e∈Es

ws(e)/
∑

e∈E w(e). We have that

|Es | ≤
1
2
dn (47)

and
∑

e∈Es
ws(e)∑

e∈E w(e)
≤
(√

2d + 2√
2d − 2

)2

. (48)

Let us fix n. By increasing the value of parameter d, the upper
bound in (47) increases, but the upper bound in (48) decreases
and gets closer to 1. On the other hand, if d → 2, then the upper
bound in (48) tends to infinity.

We next employ a randomized algorithm to compute an (ε, d)-
abstraction of a given network. A randomized algorithm utilizes
a degree of randomness as part of its logic. Randomization
allows us to design provably accurate algorithms for problems
that are massive and computationally expensive or NP-hard.
For this aim based on [14], we sample low-connectivity coupling
links with high probability and high-connectivity coupling links
with low probability. For a given consensus network N(L) with
n nodes, we sample links of the coupling graph of this network
M := �dn/2� times in order to produce an (ε, d)-abstraction.
Let us denote probability of selecting a link e ∈ E by π(e)8 that
is proportional to w(e)r(e), where w(e) and r(e) are the weight
and the effective resistance of link e, respectively. In each step
of sampling,9 we add the selected link e to the abstraction with
weight w(e)/(Mπ(e)). All details of our proposed algorithm are
explained below. The following result, which is obtained based
on a theorem in [14, Th. 1], provides us with a certificate that the
above-mentioned randomized algorithm is capable of generating
a proper abstraction of a given linear consensus network.

Theorem 5: Suppose that a linear consensus network N(L)
endowed with a homogeneous systemic performance measure
ρ : Ln → R+ of order −α is given and a permissible perfor-
mance loss parameter ε ∈ (1/

√
n, 1] is fixed. Let us pick a real

number d that is at the order of ε−2 log n. Then, Algorithm 1 pro-
duces an (ε, d)-abstraction of network N(L), whose coupling
graph is a subgraph of N(L), with probability at least 0.5.

Proof: Let us consider the following projection matrix:

P = W 1/2EL†ETW 1/2 (49)

where E is an m-by-n incidence matrix and W is a diagonal
matrix with link weights on its diagonal such that L = ETWE.
The m-by-m matrix P has eigenvalue at 0 with multiplicity
m − n + 1 and eigenvalue at 1 with multiplicity n − 1 [14,
Lemma 3]. Now, we show that the sampling of links in Algo-
rithm 1 corresponds to selecting M = O(n log n/ε2) columns
at random from matrix P . Then, by a concentration lemma of
Rudelson [29, Thm. 3.1] and Markov’s inequality, with proba-
bility at least 0.5, we get

‖P − PΓP‖2 ≤ ε (50)

8It is well-known that
∑

e∈E
w(e)r(e) = n − 1; therefore, we have∑

e∈E π(e) = 1.
9A sampling is a discrete probability distribution on a support E of all possible

samples. The probability of selecting link e is denoted by positive number
π(e) for all e ∈ E . We also have

∑
e∈E π(e) = 1, because π is a probability

distribution on E .
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Algorithm 1: Network Abstraction Algorithm.

Input: G = (V, E , w) and r(e) for all e ∈ E
Output: Gs = (V, Es , ws)
1 set Gs to be the empty graph on V (i.e., Es := {} and

ws(.) := 0)
2 set π(e) = w (e)r(e)

n−1 for all e ∈ E
3 for j = 1 to M := �dn/2� do
4 sample a link {e} from E with probability

distribution π
5 Es = Es ∪ {e}
6 ws(e) = ws(e) + w (e)

M π (e)

7 end
8 return Gs

where Γ is a non-negative diagonal matrix. Then, it is straightfor-
ward to show that for every homogeneous systemic performance
measure ρ : Ln → R+ , we have

∣∣∣∣
Πρ(L) − Πρ(Ls)

Πρ(Ls)

∣∣∣∣ ≤ ε

in which Ls = EW 1/2ΓW 1/2ET . One can show that the in-
equality (50) is equivalent to

sup
x ∈Rm

x 	= 0

|xT(P − PΓP )x|
xTx

≤ ε. (51)

Since Im{W 1/2E} ⊂ Rm , it follows that

sup
x ∈Im{W 1 / 2 E }

x 	= 0

|xT(P − PΓP )x|
xTx

≤ sup
x ∈Rm

x 	= 0

|xT(P − PΓP )x|
xTx

≤ ε.

Let us define x = W 1/2Ex′. Then, we can rewrite (51) as
follows:

sup
x ′∈Rn

x ′ /∈k e r{W 1 / 2 E }

|x′T(L − Ls)x′|
x′TLx′ ≤ ε. (52)

For all x′ ∈ ker{W 1/2E}, one gets x′TLx′ = x′TLsx
′ = 0. As

a result, it follows that

sup
x ′∈Rn

x ′ 	= 0

|x′T(L − Ls)x′|
x′TLx′ ≤ ε (53)

which implies that

(1 − ε)L � Ls = EW 1/2ΓW 1/2ET � (1 + ε)L. (54)

Finally, using this and Theorem 3, we conclude the desired
result.

Algorithm 1 produces a network abstraction with
O(n log n/ε2) feedback links in expectation and runs in approx-
imately linear time Õ(m), where m is the number of links (c.f.,
[30]). This favorable almost-linear-time complexity is achieved
by having access to good approximations of all effective re-
sistances. In [14], Spielman and Srivastava show that O(log n)
calls to a solver for a linear system of equations with a symmetric
diagonally dominant matrix can provide sufficiently good ap-
proximations to all effective resistances. Moreover, it is shown

Fig. 3. Block diagram of the augmented network (56).

in [15] that a spectral sparsification with O(n/ε2) links can be
computed in O(n3m/ε2) time by employing a slower deter-
ministic algorithm for link selection. The best-known classical
algorithm for calculating effective resistances relies on solving
a Laplacian linear system and takes Õ(m) time [15], [31].

Remark 5: By putting together results of Theorems 4 and 5,
we observe an intrinsic tradeoff between the number of feed-
back links M and the permissible performance loss parameter
ε. These two design factors move in the opposite directions, i.e.,
if we decrease M , ε increases, and vice versa. According to
Theorems 4 and 5, one can deduce that the number of feedback
links M decreases inversely with the square of ε.

C. Guaranteed Performance Bounds

In the following, we show that our proposed abstraction algo-
rithm approximately preserves frequency characteristics of the
original (dense) network (see Fig. 3). Our abstraction method
shares some common roots with the classical model reduction
techniques, where the objective is to find a reduced model that
yields small H2-norm error (c.f., [8]). Our first result gives a
tight upper bound on the H2-norm error of two linear consensus
networks in terms of their Laplacian matrices.

Lemma 1: Suppose that N(L) and N(L̂) are two given con-
sensus networks governed by dynamics (7). Then, we have

‖G − Ĝ‖2
H2

‖G‖2
H2

≤
Tr
(
L̂† + L† − 4(L + L̂)†

)

Tr (L†)
(55)

where G(s) and Ĝ(s) are transfer matrices of N(L) and N(L̂)
from input ξ to output y , respectively.

Proof: In the first step, we define an augmented dynamical
network N∗ using the two given networks
⎧
⎪⎪⎨

⎪⎪⎩

ż(t) = −
[
L + 1

n Jn 0

0 Ls + 1
n Jn

]
z(t) +

[
Mn

Mn

]
ξ(t)

y(t) = [Mn −Mn ] z(t)

(56)

in which z ∈ R2n , ξ ∈ Rn , y ∈ Rn . If we denote the transfer
matrix of network (56) from ξ to y by G∗, then one can show
that

‖G∗‖H2 = ‖G − Gs‖H2 . (57)

It is known that calculating the H2-norm of a linear time-
invariant system reduces to solving an algebraic Lyapunov equa-
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tion (ALE) [32]. Let us form the corresponding ALE to (57)
using the state matrices of the augmented network

AX + XA =
[

Mn −Mn

−Mn Mn

]
(58)

where

A = −
[

L + 1
n Jn 0n×n

0n×n Ls + 1
n Jn

]

and

X =
[

X1 X2

XT
2 X3

]
.

The matrix equation (58) can be decomposed into three
Sylvester equations as follows. The first equation is

(
L +

1
n

Jn

)
X1 + X1

(
L +

1
n

Jn

)
= Mn

and its solution is given by

X1 =
1
2
L†. (59)

The second equation is
(

Ls +
1
n

Jn

)
X3 + X3

(
Ls +

1
n

Jn

)
= Mn

and its unique solution is given by

X3 =
1
2
L†

s . (60)

Finally, the third one is
(

L +
1
n

Jn

)
X2 + X2

(
Ls +

1
n

Jn

)
= −Mn (61)

with unique solution

X2 = −
∫ ∞

0
e−(L + 1

n Jn )tMne−(Ls + 1
n Jn )tdt

where the integrand can be reformulated as

e−(L+ 1
n Jn )tMne−(Ls + 1

n Jn )t = e−(L+ 1
n Jn )te−(Ls + 1

n Jn )t

+
1
n

e−(L+ 1
n Jn )tJne−(Ls + 1

n Jn )t

= e−(L+ 1
n Jn )te−(Ls + 1

n Jn )t +
e−2t

n
Jn .

By utilizing the Golden–Thompson inequality for Hermitian
matrices, it follows that

Tr
(
e−(L + 1

n Jn )tMne−(Ls + 1
n Jn )t

)

≥ Tr
(

e−(L +Ls + 2
n Jn )t +

e−2t

n
Jn

)
. (62)

Therefore, the trace of X2 can be bounded by

Tr(X2) = −Tr
(∫ ∞

0
e−(L + 1

n Jn )tMne−(Ls + 1
n Jn )tdt

)

≤ −
∫ ∞

0
Tr
(
Mne−(Ls +L+ 2

n Jn )t
)

dt

= −Tr
(
(L + Ls)†

)
. (63)

Putting all these pieces together, the H2-norm of the augmented
network can be written as

‖G∗‖2
H2

= Tr
(

[Mn Mn ]
[

X1 X2

X2 X3

] [
Mn

Mn

])

= Tr
([

X1 X2

X2 X3

] [
Mn Mn

Mn Mn

])
. (64)

From (59), (60), and (64), it follows that

‖G∗‖2
H2

=
1
2

Tr(L† + L†
s) − Tr((X2 + XT

2 )Mn )

≤ 1
2

Tr(L† + L†
s) − 2Tr

(
(L + Ls)†

)

where (63) is used in the last inequality. Finally, from this and
(57), we conclude the desired result

‖G − Gs‖2
H2

≤ 1
2

Tr
(
L̂† + L† − 4(L + L̂)†

)
.

�
The right-hand side of inequality (55) is always non-negative,

i.e., 0 ≤ Tr
(
L̂† + L† − 4(L + L̂)†

)
.

This is because of the fact that Tr(L†) is convex on Ln and
the following inequality holds:

Tr
(
(L + L̂)†

)
≤ 1

4
Tr
(
L†)+

1
4

Tr
(
L̂†).

The inequality (38) implies proximity of state matrices of the
original and its abstraction on the cone of positive semidefinite
matrices. In the following result, it is proven that the frequency
specifications of two ε-approximations are indeed very similar
in H2 sense.

Theorem 6: If N(Ls) is an ε-approximation of N(L) for
some 0 ≤ ε < 1, then

‖G − Gs‖H2

‖G‖H2

≤
√

ε(4 − ε)
(1 − ε)(2 + ε)

(65)

where G(s) and Gs(s) represent the transfer matrices from input
ξ to output y of N(L) and N(Ls), respectively.

Proof: According to the definition of ε-approximation and
the fact that Tr(L†) is a homogeneous systemic performance
measure of order −1, we get

Tr(L†
s) ≤

1
1 − ε

Tr(L†). (66)

Moreover, it follows from Theorem 3 that

(2 + ε)−1(L)† ≤ (L + Ls)†. (67)

By taking trace from both sides of (67), one obtains

Tr
(
(L + Ls)†

)
≥ 1

2 + ε
Tr
(
L†). (68)
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Fig. 4. This plot presents the upper bound given by Theorem 6 on the
H2 -norm error of a consensus network and its ε-approximation network.

By applying result of Lemma 1, we can conclude that

‖G − Gs‖2
H2

‖G‖2
H2

≤
Tr
(
L̂† + L† − 4(L + L̂)†

)

Tr(L†)

≤ ε(4 − ε)
(1 − ε)(2 + ε)

(69)

where the last inequality is obtained after using (66) and
(68). �

Fig. 4 depicts the upper bound in inequality (65) for the
relative H2-norm error of a linear consensus network and its
ε-approximation.

Corollary 1: Suppose that y is the output of network N(L)
and ys is the output of its corresponding ε-approximation N(Ls)
for some 0 ≤ ε < 1. Then, the steady-state expected value of
their output error can be bounded by

lim
t→∞

E
{
‖y(t) − ys(t)‖2

2

}
≤ ε(4 − ε)

2(1 − ε)(2 + ε)
Tr
(
L†).

The proof of this corollary is based on the proof of Theorem 6.
Remark 6: In [13], Dhingra et al. consider a similar prob-

lem of identifying a sparse representation of a given dense lin-
ear consensus network. Their proposed method has two steps.
First, an optimal sparse network topology is obtained by adding
the H2-norm error (c.f., Fig. 3) with another penalizing term
that accounts for sparsity. Then, the optimal link weights are
chosen over the identified topology. For both cases, approxima-
tion methods based on the Broyden–Fletcher–Goldfarb–Shanno
method are employed in [13]. This method chooses a descent
direction based on an approximation of the Hessian matrix.
Therefore, each update requires O(n6) operations [13]. In com-
parison with Algorithm 1 in Section V, the proposed method
in [13] is computationally expensive. Furthermore, it does not
provide any guaranteed performance certificates.

VI. LOCALIZED NETWORK ABSTRACTION

Our methodology can be extended further to explore several
interesting network design problems, such as partial or local-
ized abstraction of a given large-scale consensus network. In
this section, we only look at one of such design problems. Let
us consider a slightly modified version of (7) by involving a

predesigned state feedback controller

N(L0 + L1) :

⎧
⎪⎨

⎪⎩

ẋ(t) = −L0x(t) + u(t) + ξ(t)
u(t) = −L1x(t)
y(t) = Mnx(t)

(70)

with initial condition x(0) = x0 , where L0 is the Laplacian ma-
trix of the open-loop network and the Laplacian matrix L1 is
the predesigned state feedback gain matrix. Let us represent the
corresponding coupling graph to L1 by G1 . If L1 is obtained
via traditional optimal control methods without incorporating
sparsity measures, then one should expect to get a dense inter-
connection topology for G1 ; we refer to [17] for discussions on
a spatially decaying structure of optimal controllers. Therefore,
our design objective is to compute a localized abstraction for the
closed-loop network N(L0 + L1) that only sparsifies G1 . Let us
represent such an abstraction by Ĝ1 with Laplacian L̂1 .

Theorem 7: Suppose that a linear consensus network with
structure (70), a homogeneous systemic performance measure
ρ : Ln → R+ of order −α, and a design parameter d > 2 are
given. For ε =

√
8d

d+2 , there exists a subgraph abstraction Ĝ1 =
(V, Ê , ŵ) ofG1 = (V, E , w) with at most dn/2 links that satisfies
Ê ⊂ E and

∣∣∣∣∣
Πρ(L0 + L1) − Πρ(L0 + L̂1)

Πρ(L0 + L̂1)

∣∣∣∣∣ ≤ ε. (71)

Furthermore, it follows that

wtotal(L̂1) ≤ (1 + ε) wtotal(L1)

in which wtotal(L) = 1
2 Tr(L).

Proof: According to [15, Th. 1.1], coupling graph G1 =
(V, E , w) has a weighted subgraph H = (V, Ê , ŵ) with |Ê | =
�d(n − 1)/2� that satisfies

L1 � LH � d + 2 +
√

8d

d + 2 −
√

8d
L1 (72)

where LH is the Laplacian matrix of graph H. We define Ĝ1 =
(V, Ê , ŵ) based on the following Laplacian matrix:

L̂1 :=
(1 −

√
d/2)2

1 + d/2
LH. (73)

From (72) and (73), it follows that
(

1 −
√

2d

d/2 + 1

)
L1 � L̂1 �

(
1 +

√
2d

d/2 + 1

)
L1 . (74)

Moreover, we know that
(

1 −
√

2d

d/2 + 1

)
L0 � L0 �

(
1 +

√
2d

d/2 + 1

)
L0 . (75)

From (74) and (75), we have
(
1 −

√
8d

d+2

)
(L0 + L1) � L0 + L̂1 �

(
1 +

√
8d

d+2

)
(L0 + L1).

(76)

Using (76) and the result of Theorem 3, it yields that N(L0 +
L̂1) is a (

√
8d

d+2 , d)-abstraction of N(L0 + L1). �
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This result is particularly useful is abstraction of large-scale
consensus networks where the control objective is to abstract
only the desired parts of a network without drastically affecting
the global performance.

VII. PARALLEL NETWORK ABSTRACTION

Building upon the results of the previous section, we intro-
duce a distributed and parallel implementation of our proposed
localized algorithm. The main advantage of parallel abstrac-
tion is that several localized abstraction problems can be solved
simultaneously by dividing a large-scale network abstraction
problem into smaller in size localized problems.

Definition 4: A base subgraph G0 of a network is a subgraph
that is formed by those feedback links that will stay unchanged
throughout the abstraction process.

Let us denote the Laplacian matrix of a base subgraph G0 by
L0 . For a given natural number p, the original coupling graph
can be partitioned as the union of a base subgraph and p other
subgraphs G1 , . . . ,Gp , i.e.,

L = L0 +
p∑

i=1

Li (77)

where Li is the Laplacian matrix of subgraph Gi . Without loss
of generality, one may assume that the node set of all sub-
graphs is V , where V is the node set of the original graph. This
assumption implies that the corresponding Laplacian matrices
are compatible n-by-n matrices. The network setup for parallel
implementation of abstraction takes the following form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = −L0x(t) + u(t) + ξ(t)

u(t) = −
p∑

i=1

Li x(t)

y(t) = Mnx(t)

(78)

with initial condition x(0) = x0 .
Assumption 4: The corresponding subgraphs to Li for i =

1, . . . , p are link-disjoint and dense.
Theorem 8: Suppose that a linear consensus network with

structure (78), a homogeneous systemic performance measure
ρ : Ln → R+ of order −α, and a number d > 2 are given. If the
coupling graph of the network can be decomposed as (77), then
for ε =

√
8d

d+2 there exists a set of subgraph sparsifier {Ĝi}p
i=1 for

{Gi}p
i=1 where each sparsifier subgraph has at most dn/2 links

and the global performance index satisfies
∣∣∣∣∣
Πρ(L0 +

∑p
i=1 Li) − Πρ(L0 +

∑p
i=1 L̂i)

Πρ(L0 +
∑p

i=1 L̂i)

∣∣∣∣∣ ≤ ε. (79)

Furthermore, it follows that wtotal(L̂i) ≤ (1 + ε) wtotal(Li) for
i = 1, 2, . . . , p.

Algorithm 1 can be implemented on several parallel local-
ized processing units to abstract every Gi for i = 1, . . . , p. This
parallelization scheme cuts the time complexity of solving an
abstraction problem down to Õ(mmax), where mmax is the
number of links of the densest graph among G1 , . . . ,Gp .

VIII. SHORTCOMINGS OF �0 /�1-REGULARIZED

SPARSIFICATION METHODS

In order to put our proposed methodology into perspective,
we discuss some of the shortcomings of the �0 /�1-regularization-

based sparsification methods. The common approach is to for-
mulate an optimal control problem that is augmented by a
penalty term to promote sparsity. The resulting optimal con-
trol problem can be usually cast as a bilinear matrix optimiza-
tion problem and convexified using alternating methods [5],
[33]. While �0 /�1-regularization-based methods generally do not
scale with network size and suffer from high time complexities,
we would like to accentuate a more important issue by means
of an example that shows �0 /�1-regularized methods do not al-
ways return sparse solutions. Let us consider a linear consensus
network that is governed by (7) whose feedback structure is
represented by a complete graph with identical link weights w0 ,
Laplacian matrix L0 , link set E0 , and incidence matrix E0 . The
control objective is to eliminate or reweigh some links of the
network while minimizing H2-norm of the network from ξ to y.
This problem can be formulated as the following �0-problem:

Minimize
w (e)

‖GF ‖2
H2

+
γ

2
‖AF ‖�0 (80)

subject to:

F =
∑

e∈E0

w(e)beb
T
e (81)

w(e) ≤ w0 (82)

L0 − F ∈ Ln (83)

in which GF (s) is the transfer matrix of network N(L0 − F )
from ξ to y, AF is the adjacency matrix of N(L0 − F ), and be

is the column of incidence matrix E0 that corresponds to link
e. Boundedness of the cost function as well as constraint (83)
ensures connectivity of the coupling graph and positive semidef-
initeness of the Laplacian matrix of N(L0 − F ). In the penalty
term, γ > 0 is a design parameter and �0 sparsity measure of
matrix AF is equal to the total number of nonzero elements of
AF , which is defined by (2). For an undirected graph, the value
of this sparsity measure is equal to twice the number of the
edges. The value of cost function (80) is greater than or equal
to γ(n − 1). One can get arbitrarily close to this lower bound
through the following steps. Let us select a spanning tree T0
from link set E0 and set elements of F in a way that L0 − F be-
comes the Laplacian matrix of T0 with link weights w0 − w(e).
It is known that quantity ‖GF ‖H2 is bounded if and only if the
corresponding coupling graph to L0 − F has at least n − 1 links
[11], which in our case T0 does have n − 1 links. Therefore, the
value of ‖GF ‖H2 can be made arbitrarily close to 0 by letting
w(e) get closer to −∞.

After relaxing �0-measure by �1-norm and representing the
H2-norm in terms of Laplacian spectrum, the objective function
(80) can be rewritten as

1
2

n∑

i=2

λi(L0 − F )−1 +
γ

2
‖AF ‖�1 (84)

where ‖AF ‖�1 is equal to the sum of the absolute values of all
elements of AF and

‖AF ‖�1 = 2
∑

e∈E0

(w0 − w(e)) = Tr(L0 − F ).

The cost function (84) can be simplified further to obtain

1
2

n∑

i=2

λi(L0 − F )−1 +
γ

2

n∑

i=2

λi(L0 − F ). (85)
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Thus, the �1-problem is the minimization problem with cost
function (85) and constraints (81)–(83). This problem is convex
and has a unique solution. This follows from the following facts
that H2-norm is a systemic measure and convex, trace is a linear
operator and convex, and the sum of these two convex functions
results in a convex cost function (85). The inequality (82) also
represents a convex set. Moreover, positive semidefiniteness of
L0 − F and connectivity of the resulting network N(L0 − F )
are both convex constraints; therefore, constraint (83) is convex.
By applying the arithmetic and geometric means inequality, one
can show that the spectral function (85) is lower bounded by con-
stant (n − 1)

√
2γ. By respecting all the constraints and for all

design parameters γ > 1
8n2 w 2

0
, this lower bound can be achieved

by a complete graph with identical link weights 1
n
√

2γ
− w0 .

An interesting scenario happens when γ = 2 and w0 > 1
4 n−1

where the lower bounds on the least achievable cost values for
both �0-problem and its relaxed �1-problem coincide and be-
come 2(n − 1). In this case, the optimal networks from solving
the �0-problem and �1-problem have very different sparsity pat-
terns: the �0-problem solution is a network with a spanning tree
topology and arbitrarily large link weights, while �1-problem
identifies a network whose coupling graph is complete with
identical link weights. This shows that �1-relaxation of an
�0-regularized optimal control does not always provide sparse
solutions.

IX. ILLUSTRATIVE EXAMPLES

In this section, we present several numerical examples to
illustrate our theoretical findings.

Example 1: We first consider a consensus network with 40
agents defined over an unweighted coupling graph with two
dense components that are connected by a single link, i.e., a
cut edge. Each of the components is obtained by adding 100
uniformly and randomly selected links to an empty graph with
20 nodes; see Fig. 5(a). Based on Algorithm 1, we sample
low-connectivity coupling links (i.e., feedback gains) with high
probability and high-connectivity coupling links with low prob-
ability. The probability of selecting a link from the coupling
graph is depicted in Fig. 6. One observes that the probability
of selecting the cut edge as an important link is much higher
than the probability of choosing other links. Fig. 5(b) shows a
(0.5, 3.05)-abstraction of the network after applying Algorithm
1 that has 61 links and meets all requirements of Definition 3.
The coupling graph of the abstraction is weighted and has about
70% fewer links than the original network. Although we set
ε = 0.5 when running Algorithm 1, the performance loss of the
resulting abstraction is less than 24% according to Table II.

Example 2: Let us consider a consensus network with 100
agents and exponentially decaying couplings that are defined by

w({i, j}) =

{
c e−γ |i−j | if i 	= j

0 if i = j
(86)

where c and γ are positive numbers and i, j ∈ V . This class
of networks arises in various applications where there is a no-
tion of spatial distance between the subsystems; we refer to
[17] for more details. Fig. 7(a) shows the adjacency matrix of
the coupling graph of this network. According to Theorem 4,
this network has a (0.5, 27.85)-abstraction. Fig. 7(b) illustrates
a (0.5, 22.28)-abstraction of the network after applying Algo-
rithm 1, where the design parameter ε is set to 0.5. The original

Fig. 5. (a) An unweighted coupling graph with 40 nodes, 201 links,
‖G‖H2 = 2.7837, and wtotal(L) = 201. (b) An abstraction of (a) with 40
nodes, 61 links, ‖Gs‖H2 = 3.0805, and wtotal(Ls ) = 199.88.

Fig. 6. Probability of selecting a link of the coupling graph shown in
Fig. 5(a) as an important link. A cut edge is the most important link with
the highest probability: if we throw out the cut edge, the coupling graph
of the resulting abstraction will be disconnected for sure.

TABLE II
RELATIVE PERFORMANCE LOSS PERCENTAGE OF NETWORK FIG. 5(A) WITH

RESPECT TO ITS ABSTRACTION FIG. 5(B)

Systemic performance measure
|Π ρ (L s )−Π ρ (L ) |

Π ρ (L s ) × 100

System Hankel norm: 1
2 λ2

−1 19.65%

Squared H2 norm: 1
2

∑n

i=2 λi
−1 18.34%

Zeta spectral norm:
(∑n

i=2 λi
−2
) 1

2
15.26%

Local deviation error: 1
2

∑
i∈V di

−1 23.16%

network has 4950 links, while its abstraction has 1114 coupling
links and meets all requirements of Definition 3. As a result,
abstraction achieves 77.49% sparsification. Although, in this
example, we allow 50% performance loss, numerous simula-
tion examples assert that the resulting bounds for performance
loss can be comparably smaller. As seen from Table III , the
relative performance loss percentage is less than 11%. Fig. 8
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Fig. 7. (a) This plot demonstrates the sparsity pattern of the adjacency
matrix of network in Example 2 with coupling parameters c = 1 and
γ = 0.05. This network has 100 agents and 4950 links and the color
intensity at each pixel of this plot shows magnitude of the corresponding
element in the adjacency matrix. (b) This plot depicts the sparsity pattern
of the adjacency matrix of an abstraction that has 1114 links. The relative
H2 error of these two networks is ‖G − Gs‖H2 /‖G‖H2 = 0.18 and the
ratio of their total weights is wtotal(Ls )/wtotal(L) = 1.0028.

TABLE III
RELATIVE PERFORMANCE LOSS PERCENTAGE OF NETWORK FIG. 7(A) WITH
RESPECT TO ITS ABSTRACTION FIG. 7(B) THAT HAS 77.49% FEWER LINKS

Systemic performance measure
|Π ρ (L s )−Π ρ (L ) |

Π ρ (L s ) × 100

System Hankel norm: 1
2 λ−1

2 10.72%

Squared H2 norm: 1
2

∑n

i=2 λi
−1 6.44%

Zeta spectral norm:
(∑n

i=2 λ−2
i

) 1
2

9.69%

Local deviation error: 1
2

∑
i∈V d−1

i 3.07%

Fig. 8. This plot presents the probability distribution of the sampling
process to choose important links in Example 2. The color intensity of
each pixel shows the importance of that link for sampling.

depicts the probability distribution of the sampling process to
select important links in Algorithm 1, where the color inten-
sity of pixels shows how important that link is. According to
Algorithm 1, low-connectivity coupling links are sampled with
higher probability than high-connectivity coupling links.

Example 3: Let us consider a dynamical network consists of
100 agents that are randomly distributed in a 30 × 30 square-
shape area in space and are coupled over a proximity graph.

Fig. 9. (a) An unweighted coupling (proximity) graph of a consensus
network with 100 agents is presented. Every agent is connected to
all of its spatial neighbors within a closed ball of radius r = 10. This
graph has 1291 links and wtotal(L) = 1291. (b) This graph shows a
(0.5, 16.62)-abstraction of the network. Our abstraction algorithm re-
sults in a network with a weighted coupling graph that has 831 links
and wtotal(Ls ) = 1293.4. The relative H2 error of these two networks is
‖G − Gs‖H2 /‖G‖H2 = 0.17.

Every agent is connected to all of its spatial neighbors within
a closed ball of radius r = 10. Fig. 9(a) shows the resulting
coupling graph of this dynamical network that has 100 nodes
and 1291 links, and Fig. 9(b) depicts an (0.5, 16.62)-abstraction
of this network, which is obtained using Algorithm 1 with ε =
0.5. The number of coupling links in this abstraction is 831,
which is 35.63% sparsification, and meets all requirements of
Definition 3. Table IV summarizes the percentage of the relative
performance loss with respect to some systemic performance
measures.

Example 4: Let us consider a simple model for the formation
control of a group of autonomous vehicles, which is given by

[
ẋ(t)
v̇(t)

]
=
[

0 I

−L −βL

] [
x(t)
v(t)

]
+
[

0
I

]
ξ(t) (87)

y(t) = Mnv(t) (88)

where β > 0 is a design parameter. Each vehicle has a position
and a velocity variable. The state variable of the entire network
is denoted by [x(t) v(t) ]T and is measured relative to a pre-
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TABLE IV
RELATIVE PERFORMANCE LOSS PERCENTAGE OF NETWORK FIG. 9(A) WITH
RESPECT TO ITS ABSTRACTION FIG. 9(B) THAT HAS 35.63% FEWER LINKS

Systemic performance measure
|Π ρ (L s )−Π ρ (L ) |

Π ρ (L s ) × 100

Hankel norm: 1
2 λ2

−1 19.65%

Squared H2 -norm: 1
2

∑n

i=2 λi
−1 18.34%

Zeta spectral norm:
(∑n

i=2 λ−2
i

) 1
2

15.26%

Local deviation error: 1
2

∑
i∈V d−1

i 23.16%

TABLE V
RELATIVE PERFORMANCE LOSS PERCENTAGE OF NETWORK (87)-(88) WITH
COUPLING GRAPH FIG. 9(A) WITH RESPECT TO ITS ABSTRACTION FIG. 9(B)

Systemic performance measure
|Π ρ (L )−Π ρ (L s ) |

Π ρ (L s ) × 100

Squared H2 -norm: 1
2β

∑n

i=2 λ−2
i 17.58 %

Local deviation error: 1
2β

∑n

i=1 di
−2 11.38 %

specified desired trajectory xd(t) and velocity vd(t). Without
loss of generality, we may assume that the position and veloc-
ity of each vehicle are scalar variables. The reason is that one
can decouple higher D-dimensional models into D decoupled
(87)-(88) models. The overall objective is for the network to
reach a desired formation pattern, where each autonomous ve-
hicle travels at the constant desired velocity vd while preserving
a prespecified distance between itself and each of its neighbors.
In this model, the state feedback controller uses both position
and velocity measurements and L is, in fact, the corresponding
feedback gain, which represents the coupling topology in the
controller array, and constant β is a design parameter [27]. We
consider the steady-state variance of the performance output
of this network as the performance measure. This quantity is
indeed equivalent to the square of the H2-norm of the system
from the exogenous disturbance input to the performance output
[27], [34]–[36]. The squared H2-norm of (87) and (88) can be
characterized in terms of Laplacian eigenvalues of the coupling
graph as follows:

Θ2
2(L) := lim

t→∞
E
[
yT(t)y(t)

]
=

1
2β

n∑

i=2

λ−2
i =

1
2β

ζ2
2 (L).

We refer to [10] for more details. This quantity is a homoge-
neous systemic performance measure; therefore, we can apply
our abstraction algorithm. Suppose that the coupling graph of
network (87)-(88) is given by Fig. 9(a). Then, as we mentioned
in Example 3, Fig. 9(b) illustrates one example of (0.5, 16.62)-
abstraction of this network that is obtained using Algorithm 1.
As shown in Example 3, this network has fewer coupling links
(831 links) compared to the original network. Table V presents
the percentage of the relative performance loss, where both sys-
temic performance measures are homogeneous of order −2.
This example shows that our proposed abstraction algorithm
can be successfully applied to second-order linear consensus
networks as well.

X. DISCUSSION

We have introduced a notion of abstraction for a class of
linear consensus networks based on notions of spectral spar-
sification. There have been several close-in-spirit notions of
graph sparsifications in the context of theoretical computer sci-
ence. While these other notions are interesting for their own
sake from a combinatorial standpoint, their connections to
performance analysis and synthesis of dynamical networks are
not trivial and require further scrutiny. In this context, for a given
graph there are several ways to define sparse subgraphs, namely,
distance sparsifiers that approximate all pairwise distances up to
a multiplicative and/or additive error (see [37] and subsequent
research on spanners), cut sparsifiers that approximate every cut
to an arbitrarily small multiplicative error [38], spectral spar-
sifier that approximate every eigenvalue to an arbitrarily small
multiplicative error [30], and many more. It is shown that spar-
sifiers can be constructed by sampling links according to their
strength, effective resistance [14], edge connectivity [31], or
by sampling random spanning trees [39]. Benczúr and Karger
propose a randomized algorithm to construct a cut sparsifier in
O(m log2 n) time for unweighted graphs and O(m log3 n) time
for weighted graphs [31], [38]. The notion of spectral sparsifier
is stronger than cut sparsifier, which implies spectral sparsifiers
are also cut sparsifiers. One of our current research directions
is to investigate all these methods of sparsification and explore
their connections to dynamical networks.

In our analysis, we assumed that the input matrix of the net-
work is an identity matrix. Further extension of the current
work includes linear consensus networks over directed coupling
graphs with arbitrary input matrices. However, this generaliza-
tion is challenging and even the problem formulation demands
some appropriate conditions to guarantee the boundedness of
performance measures.
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[37] D. Peleg and A. A. Schäffer, “Graph spanners,” J. Graph Theory, vol. 13,
no. 1, pp. 609–638, 1989.
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