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Abstract—For the class of noisy time-delay linear consen-
sus networks, we obtain explicit formulas for risk of large
fluctuations of a scalar observable as a function of Lapla-
cian eigenspectrum. It is shown that there is an intrinsic
tradeoff between risk and effective resistance of the under-
lying coupling graph of the network. The main implication is
that increasing network connectivity, increases the risk of
large fluctuations. For vector-valued observables, we obtain
computationally tractable lower and upper bounds for joint
risk measures. Then, we study behavior of risk measures
for networks with specific graph topologies and show how
risk scales with the network size.

Index Terms—Networked control systems, decentralized
control, delay systems, design optimization.

I. INTRODUCTION

THE notion of the systemic risk describes the fragility in
interconnected networks that can result in global or cas-

cading failures due to either relatively small disturbances at the
subsystem level or larger and more malicious types of disrup-
tions affecting the whole network. The challenges of dealing
with risk spread through many areas of engineering and econ-
omy [1]–[6]. Modern networked control systems bear innate
complexities in their structure and evolving dynamics. There
are numerous networks, which are playing major roles in fab-
rics of our society, that are susceptible to exogenous stochastic
uncertainties and disturbances. Examples include platoon of au-
tonomous vehicles in highways, synchronous power networks
with integrated renewable sources, water supply networks, in-
terconnected networks of financial institutions, and air traffic
networks. Recent crises in various sectors of our societies show
specific vulnerabilities of modern networks due to weaknesses
in their structures, e.g., air traffic congestion, power outages, the
2008 financial crisis, and other major disruptions. The costly and
severe in magnitude outcomes of these network-related crises
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motivate risk-oriented analysis and synthesis of networked con-
trol systems.

There are some recent lines of research that are close in spirit
to the subject of this paper. In [4], the authors introduce novel
concepts of resilience for dynamic flow networks, where they
study robustness of such networks with respect to perturba-
tions that reduce the flow functions on the links of the network.
They also discuss a situation in which imposing finite density
constraints on the links may result in cascaded failures. Other
related works [7]–[10] utilize performance measures based on
H2-norm to quantify the quality of the noise propagation in
noisy linear consensus networks. The focus of these works are
on linear consensus networks with no time delay. In [11] and
[12], the authors introduce a class of spectral systemic perfor-
mance measures (which includes Hp -norms as its special case)
to synthesize networks through growing and sparsification of
links in noisy linear consensus networks in the absence of time
delay. In all these papers, performance measures assess holistic
and macroscopic features of the networks, such as total deviation
from average or uncertainty volume of the output. In this paper,
we show that exogenous uncertainties along with time-delay cre-
ates unorthodox behaviors in microscopic level that cannot be
captured by the existing performance measures in the literature.

The class of time-delay linear consensus model (6) has been
previously studied within different disciplines [13]–[18]. In
[13], the authors obtain expressions for the average size of fluc-
tuations using modal behavior of the network. They also show
how extreme fluctuations scale with network size and argue that
distribution of those nodes with highest fluctuation takes spe-
cific forms. The focus of [14] is on synchronizability threshold
and the scaling behavior of the width of the synchronization for
linear consensus systems with uniform and multiple time delays,
where their results and analysis are heavily relied on numeri-
cal simulations. The authors of [16] propose a method to study
systems with multiple delays (scalar and multidimensional) in
presence of additive noise. Using the Laplace transform, they
obtain an integral formula for statistics of the state variables
without providing closed-form solutions for the integrals. Their
results are applied to first- and second-order consensus networks
with multiple delays and complete (all-to-all) graph topology.
Extensive numerical solutions to draw conclusions are evident
in all these works. In this paper, we adopt a rigorous terminol-
ogy and develop tools based on notions of risk to quantify and
measure the tendency of noisy time-delay linear consensus net-
works toward exhibiting undesirable systemic events (e.g., large
fluctuations and violating critical constraints). Our analysis is
based on the fact that a time-delay linear consensus network can
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be decomposed into many one-dimensional systems, and then,
analyzed using tools developed in [15], [17], and [18].

Systemic risk as a tool for decision making under uncertainty
has been initially employed to study uncertainties in financial
markets [2], [3], [5], [6], [19]. More recently, cascading failures
in interconnected financial institutes have been studied [1], [5].
In [20] and [21], the notion of value-at-risk has been applied
to calculate the probability of large fluctuations due to external
disturbances in linear consensus networks with no time delay.
The present work is an outgrowth of [20] and [21] in a num-
ber of ways. At first, we introduce and analyze two types of
risk measures to assess the possibility of large fluctuations in
networks: one gauge risk in probability and the other one in
expectation w.r.t. a utility (cost) function. By exploiting func-
tional properties of risk measures, such as (quasi-) convexity
and monotonicity, we calculate explicit formulas for them w.r.t.
scalar network observables and show that these individual risk
measures are spectral functions of Laplacian eigenvalues and
eigenvectors. Furthermore, it is shown that the risk measures
are not monotone functions of Laplacian eigenvalues, i.e., in-
creasing connectivity (through adding new feedback intercon-
nections or increasing feedback gains) may increase the risk of
large fluctuations, and sparsification (eliminating existing feed-
back loops) may decrease the risk of large fluctuations. We do
not observe this peculiar behavior when there is no time-delay.
In addition to the fundamental limits reported in [21], we char-
acterize several Heisenberg-like inequalities and reveal intrinsic
tradeoff between the risk measure and network connectivity. Our
results assert that in the presence of time delay, more connec-
tivity results in higher risk of large fluctuations that in turn may
lead to violation of critical constraints and network fragility.
Finally, we extend our risk analysis to multiple network observ-
ables. In this case, the risk measures take vector values and one
needs to calculate joint risk measures. In general, obtaining ex-
plicit closed-form formulas for the joint risk measures is nearly
impossible. However, one can employ numerical algorithms to
compute the values of such joint risk measures [22]. To tackle
this challenge, we obtain tight lower and upper bounds for the
joint risk measures and show that joint risk measures depend on
the vector of individual risk measures, where we know how to
calculate them explicitly. The big advantage of our bounds is that
they are computationally tractable. Finally, we investigate be-
havior of risk for networks with particular graph topologies and
show how the risk measures scale with network size. Several nu-
merical examples support our theoretical findings. The proofs of
main technical results, in this paper, are placed in the Appendix.
For additional details, we refer to the ArXiv e-print [23].

II. PRELIMINARIES

Throughout this paper, plain and bold lowercase letters
are reserved for scalar-valued and vector-valued variables, re-
spectively. The n-dimensional Euclidean space with elements
z = (z1 , . . . , zn )T is denoted by Rn . The set of standard Eu-
clidean basis for Rn is {e1 , . . . , en}. The nonnegative orthant
cone is defined by

Rn
+ =

{
z ∈ Rn

∣
∣ zi ≥ 0 for all i = 1, . . . , n

}
.

For x,z ∈ Rn , relation x � z holds if and only if (iff) z − x ∈
Rn

+ , and x ≺ z iff all elements of z − x are strictly positive.
The Euclidean vector and induced matrix norms is represented
by ‖ · ‖, while absolute value operation for vectors is defined
element wise, i.e., |z| = [|z1 |, . . . , |zn |]T . The n × 1 vector of
all ones is shown by 1n and the n × n centering matrix is

defined as Mn := In − 1
n 1n1T

n , where mi is the ith column of
Mn . Representation of a vector in Rn with respect to linearly
independent columns of matrix Q = [q1 | . . . |qn ] is shown by
zQ = [zQ

1 , . . . , zQ
n ]T , where zQ

i = qT
i z.

Algebraic Graph Theory: A weighted graph is the triple G =
(V, E , w), where V is the set of nodes, E is the set of links
(edges), and w : E → R + is the weight function of the graph
that assigns a real number to every link.

Assumption 1: For every pair of nodes i, j ∈ V , we assume:
1) nonnegativity of link weights, i.e., w(i, j) ≥ 0, 2) indirectness
of links, i.e., w(i, j) = w(j, i), and 3) simpleness, i.e., w(j, j) =
0. Moreover, this paper only considers connected graphs.

Let us denote kij = w(i, j) for every i, j ∈ V . The Laplacian
matrix of graph G is an n × n matrix L = [lij ] whose elements
are defined as

lij :=
{ −kij , if i �= j

ki1 + · · · + kin , if i = j.
(1)

Laplacian matrix of a graph is symmetric and positive semidef-
inite. Our connectivity assumption implies that only the small-
est Laplacian eigenvalue is equal to zero and all other ones
are strictly positive, i.e., 0 = λ1 < λ2 ≤ · · · ≤ λn . The eigen-
vector of L corresponding to λk is denoted by qk . By let-
ting Q = [q1 | . . . |qn ], it follows that L = QΛQT with Λ =
diag [0, λ2 , . . . , λn ]. We normalize the Laplacian eigenvec-
tors such that Q becomes an orthogonal matrix, i.e., QT Q =
QQT = In with q1 = 1√

n
1n .

Remark 1: Suppose that En is the n × n diagonal matrix
that is obtained by setting element of (1, 1) of In to zero. For an
n × n unitary matrix Q, the standard graph theory results are:
Mn = QEnQT and BT

n Bn = nMn = nQEnQT , where Bn is
the n(n − 1)

2 × n complete incidence matrix.
The notion of the effective resistance is a widely used metric

to measure how strongly a graph is connected in the context
of the graph theory [10], [24], [25]. The effective resistance
between every pair of nodes i and j of a graph can be inter-
preted as the voltage difference between terminals i and j if
we replace every link with an electrical resistance (whose value
is equal to that link’s weight) and let unit current source to be
applied between the two nodes; we refer to [24] and [26] for
more information. The total effective resistance is the sum of all
effective resistances over all distinct pair of nodes in G and is
equal to

ΞG = n

n∑

i=2

λ−1
i (2)

where λ2 , . . . , λn are the nonzero Laplacian eigenvalues, [24].
Probability Theory: A complete filtered probability space is

the quadruple (Ω,F , {Ft}t≥0 , P ), where {Ft}t≥0 is the filtra-
tion of a vector-valued standard Brownian motion {wt}t≥0 ,

with wt =
(
w1(t), . . . , wn (t)

)T
constructed out of n indepen-

dent scalar Brownian motions. The space of all F-measurable,
Rq -valued random variables with finite second moment is de-
noted by L2(Rq ). The stochastic process y = {yt}t∈R is {Ft}-
adapted if yt is Ft-measurable for t ≥ 0. The multivariable nor-
mal distribution is denoted by N (μ,Σ), where μ ∈ Rq is the
expected value and Σ is the q × q positive semidefinite covari-
ance matrix. A random variable y ∼ N (μ,Σ) attains a density
function iff Σ is positive definite. The error function is denoted
as

erf(z) =
1√
π

∫ z

−z

e−t2
dt.
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For fixed ε ∈ (0, 1), the following quantity is introduced for the
sake of convenience:

Sε(α) = inf
{

δ ∈ R+

∣
∣
∣
∣

1√
π

∫ δ

−δ−2α

e−t2
dt ≥ 1 − ε

}
(3)

and Sε(0) = inf
{
δ ∈ R+ | erf(δ) ≥ 1 − ε

}
.

III. PROBLEM STATEMENT

We consider the class of time-delay linear consensus networks
that has found wide applications in engineering (e.g., clock syn-
chronization in sensor networks, rendezvous in a space or time,
and heading alignment in swarm robotics) and social sciences
(e.g., agreement in opinion networks); we refer to [27] and [28]
for more details. As a motivational application, we discuss a
cooperative rendezvous problem where the control objective
of a team of agents (e.g., ground vehicles or quadcopters) is
to meet simultaneously at a prespecified location known to all
agents.1 In this rendezvous problem, agents do not have a priori
knowledge of the meeting time as it may have to be adjusted in
response to unexpected emergencies or exogenous uncertainties
(see [27] for a detailed discussion). Thus, all agents should agree
on a rendezvous time by achieving consensus. This is usually
done by each agent i = 1, . . . , n creating a state variable, say
xi ∈ R, that represents its estimation of the rendezvous time.
Each agent’s initial estimate is set to a preferred time at which it
would be able to rendezvous with other agents. The rendezvous
(more generally consensus) dynamics for each agent evolves in
time according to the following stochastic differential equation:

dxi(t) = ui(t) dt + b dwi(t) (4)

for all i = 1, . . . , n. Each agent’s control input is ui ∈ R. The
source of uncertainty is diffused in the network as additive
stochastic noise, the magnitude of which is uniformly scaled
by the diffusion b ∈ R. The impact of uncertain environments
on dynamics of agents are modeled by independent Brownian
motions w1 , . . . , wn . In real-world situations, agents experience
a time-delay in accessing, computing, or sharing its own state
information with itself and other neighboring agents [27]. It
is assumed2 that all agents experience an identical time-delay
that is equal to a nonnegative number τ . The control inputs are
determined via a negotiation process by forming a linear con-
sensus network over a communication graph using the following
feedback law:

ui(t) =
n∑

j=1

kij

(
xj (t − τ) − xi(t − τ)

)
(5)

where kij are nonnegative feedback gains. Let us denote the

state vector by xt =
(
x1(t), . . . , xn (t)

)T
and the vector of ex-

ogenous disturbance by wt =
(
w1(t), . . . , wn (t)

)T
. The dy-

namics of the resulting closed-loop network can be cast as a

1Rendezvous in space is very similar to rendezvous in time by switching the
role of time and location in the aforementioned explanation.

2This assumption has been widely used by other researchers as it allows
analytical derivations of formulas. For rendezvous in time, it is a common
practice in robotics labs to use identical communication modules for all agents,
which results in a uniform communication time-delay. Moreover, in other related
applications such as heading alignments, rendezvous in space, and velocity
control of agents using a Motion Capture (MoCap) system to observe their
spatial locations in indoor labs [29]–[31], all agents experience an identical
time-delay to access data through the MoCap system.

linear consensus network that is governed by the stochastic de-
lay differential equation

dxt = −Lxt−τ dt + Bdwt (6)

for all t ≥ 0, where the initial function xt = φ(t) is statistically
independent of w0 for all t ∈ [−τ, 0], and B = b In . The under-
lying coupling structure of the consensus network (6) is a graph
G = (V, e, w) that satisfies Assumption 1 and whose Laplacian
matrix is L. The underlying communication graph is considered
to be time-invariant with a time-independent Laplacian matrix
as the network of agents aim to reach consensus on a rendezvous
time before each agent can perform motion planning to get to
the meeting location. Upon reaching consensus, a properly de-
signed internal feedback control mechanism steers each agent
toward the rendezvous location.

Assumption 2: The time-delay satisfies τ < π
2λn

.
When there is no noise, i.e., b = 0, it is already known [32]

that under Assumptions 1 and 2, states of all agents converge to
average of all initial states 1

n 1T
n φ(0); whereas in the presence of

input noise, state variables fluctuate around the network average
1
n 1T

n x(t). In order to quantify the quality of consensus (e.g.,
rendezvous) and its fragility features, we consider the vector of
observables for the network (6)

yt = Cxt (7)

in which C is a generic q × n output matrix and yt =
(y1(t), . . . , yq (t))T . Some relevant examples of network ob-
servables are discussed in Section VI. Assumption 1 implies
that one of the modes of network (6) is marginally stable with
eigenvector 1n , while the rest are exponentially stable. The
marginally stable mode, which corresponds to the zero eigen-
value of L, must be unobservable from the output (7) so that
in the long run, yt stays bounded. This can be guaranteed by
imposing that 1n belongs to the null space of C, i.e.

1n ∈ ker(C).
According to (6), when there is no input noise, the aforemen-
tioned condition implies yt → 0 as t tends to infinity. Conse-
quently, the presence of the exogenous noise input makes the
network observables to fluctuate around zero. This implies that
agents will not be able to agree upon an exact consensus state
(e.g., rendezvous time). A practical resolution is to allow a tol-
erance interval for agents to concur.

Definition 1: For observable (7) and some δ ∈ Rq
+ , dynam-

ical network (6) can tolerate some degrees of disagreement and
reach δ-consensus if the following stochastic event:

lim
t→∞

|yt | � δ (8)

holds with high probability.3

The notion of δ-consensus means that all agents have agree-
ment on all points in

{
x ∈ Rn

∣
∣ |Cx| � δ

}
. We interpret this

definition using our rendezvous example, where C = Mn . Sup-
pose that event (8) holds with δ = δ1n . Then, the network of
agents will achieve a δ-consensus over the rendezvous time in
the following sense: In steady state, the ith agent is assured that
by xi(t) + 2δ units of time, all other agents will arrive and meet
each other in that time interval with high probability. Some al-
ternative undesirable situations may also happen that we refer
to as systemic events.

Definition 2: For a given vector δ ∈ Rq
+ , network (6) with

observable (7) will be prone to a systemic event if the probability

3High probability means a probability larger than a predefined cut-off number
close to one.
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of happening the following stochastic event:

|y1(t)| > δ1 ∨ . . . ∨ |yq (t)| > δq (9)

in steady-state, is nonzero, where ∨ is the disjunction operator.
In the rendezvous example, when the network of agents un-

dergo systemic event (9) with some probability greater than
ε > 0, it would be possible that the agents fail to reach δ-
consensus and meet simultaneously during the rendezvous time
interval.

The objective of this paper is to identify how time-delay
makes dynamical network (6) vulnerable to systemic events (9)
and quantify probability of such undesired stochastic events
that may lead to network fragility, i.e., not being able to reach
δ-consensus.

IV. STATE AND OUTPUT DYNAMICS

The dynamical network (6) satisfies all the well-posedness
conditions of the classical theory of stochastic differential
equations and it generates well-defined stochastic processes
{xt}t≥−τ and {yt}t≥−τ . We refer to [33] and [34] for more
details. In this section, we discuss statistics of these processes
and derive results that will be useful in the analysis to follow.

A. Internal Stability

The solution of the unperturbed system, i.e., b = 0, can be
described using the transition matrix of the system, which is the
matrix solution of the differential equation

Φ̇L (t) = −LΦL (t)

with initial conditions ΦL (t) = 0 if t ∈ [−τ, 0) and ΦL (0) =
In . According to [32], we have the following limit behavior as
t → +∞:

ΦL (t) −→ 1
n
1n1T

n

exponentially fast iff τ satisfies Assumption 2. From Assump-
tion 1, the transition matrix can be decomposed as

ΦL (t) = QΦ(t)QT = Qdiag[ϕ1(t), . . . , ϕn (t)]QT

for t ≥ −τ . Namely, Φ(·) is the principal solution of ẋ =
−Λx(t − τ) and Λ the diagonal matrix of Laplacian eigenval-
ues. We remark that the diagonal elements of Φ(t) do not come
in closed form for τ > 0, with the exception of ϕ1(t) ≡ 1. Nev-
ertheless, under Assumption 2, it can be shown that
∫ ∞

0
ϕi(t) dt = τf(λiτ) where f(x) =

1
2x

cos(x)
1 − sin(x)

(10)

is a function defined in (0, π
2 ) that takes values in R+ . The

plot of f is provided in Fig. 1. The details on deriving (10) are
discussed in the ArXiv e-print version [23].

B. Statistics of the Solution

The solution of the perturbed network (6) is an {Ft}t≥0-
measurable stochastic process {xt}t≥−τ given by

xt = vt +
∫ t

0
ΦL (t − s)B dws

in which

vt = ΦL (t)φ(0) − L

∫ 0

−τ

ΦL (t − s − τ)φ(s) ds.

Fig. 1. Plot of f (x) = 1
2x

cos(x )
1 − sin(x ) over its domain (0, π

2 ) that guaran-
tees the internal stability of the network (6).

Moreover, it follows that xt ∼ N (μt ,Σt) with vector-valued
mean μt = E

[
vt

]
and covariance matrix:

Σt = b2
∫ t

0
ΦL (s)ΦT

L (s) ds. (11)

C. Statistics of the Output

Consequently, the statistics of the output can be quantified as

yt ∼ N (Cμt , CΣtC
T ). (12)

The following result characterizes output matrices for which
yt ∈ L2(Rq ), t ≥ 0.

Lemma 1: 1n ∈ ker(C) if and only if

sup
t≥0

∥
∥CΣtC

T
∥
∥ < ∞.

The result of Lemma 1 implies that if Cq1 = 0, then one
gets y = limt→∞ yt ∈ L2(Rq ) as both Σ = limt→∞ CΣtC

T

and μ = limt→∞ Cμt are well defined. Moreover,y ∼ N (0,Σ)
if and only if 1n ∈ ker(C).

V. SYSTEMIC RISK MEASURES

There are several known quantifiers in the context of finance
and economy to measure the risk of a systemic event. In this
paper, we utilize two notions of risk measures, relevant to the
context of dynamical systems, in order to quantify safety mar-
gins of network (6) before it experiences systemic event (9) and
reaches a δ-consensus based on Definitions 1 and 2.

A. Risk of Large Fluctuations in Probability

When network observables admit a well-defined probability
measure, we may be able to calculate the risk of a systemic
event that is expressed in terms of violation of a set of critical
constraints; for example, stochastic event (9) in the rendezvous
example. The value-at-risk measure, also referred to as risk in
probability, determines maximum allowable fluctuation, which
we also refer to it as safety margin, before the network experi-
ences a systemic event with a prespecified probability. In other
words, this measure quantifies the smallest lower bound δ for
the systemic event z(ω) ∈ L2(R) before the probability of event
“z(ω) surpassing δ” exceeds a given threshold.
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Definition 3: For a given probability threshold ε ∈ [0, 1),
the value-at-risk, or risk in probability, is an operator Rε :
L2(R) → R that is defined by

Rε(z) = inf
{

δ ∈ R
∣
∣
∣P
(
z(ω) > δ

)
< ε
}

.

If the right-hand side has no solution, we set Rε(z) = +∞.
The value-at-risk measure enjoys several functional proper-

ties that will help us later on to derive the fundamental limits
on the best achievable risk value and tradeoffs between the risk
and network connectivity.

Proposition 1: The measureRε :L2(R)→R in Definition 3
satisfies the following properties.

1) Rε(z) = z if z is independent of ω ∈ Ω.
2) Rε(z + m) = Rε(z) + m for all m ∈ R.
3) If z1 ≤ z2 , then Rε(z1) ≤ Rε(z2)
4) Rε(αz) = αRε(z) for α > 0.
5) Rε(z) is a quasi-convex function of z.

Property (1) implies that if z includes no uncertainty, the risk
measure remains invariant. Property (2) means that Rε is not
affected when a fixed constant is added to the random variable.
Property (3) explains that if a random variable z1 takes smaller
values than z2 almost surely, then the risk of the former is smaller
than the risk of the latter. Next, (4) is a positive homogeneity
property and implies that if we scale a random variable (i.e.,
scale the uncertainty with it), then the risk will scale accordingly.
Finally, property (5) is a weak convexity property of the risk
measure and indicates that the risk of a convex combination of
two random variables cannot get worse than the maximum of
the risk of these random variables.

B. Risk of Large Fluctuations in Expectation

The second type of risk measures is quantification of risk
through statistical expectation of a utility or cost function. In
several applications in economics, game theory, and decision
and control theory, we evaluate violation of critical constraints
against some meaningful utility or cost functions. These utility
functions reflect perception of a decision maker toward a po-
tential outcome when there is uncertainty [35]. In this setting,
utility function can be interpreted as a distance function to mea-
sure how far a random variable is from a predefined threshold.
This interpretation is particularly useful in the context of dy-
namical systems as one can employ energy or entropy-based
utility functions to quantify the risk.

Definition 4: Suppose that utility function v : R → R is con-
vex and monotonically increasing. For a given threshold ε, the
risk in expectation is an operator Tε : L2(R) → R is defined by

Tε(z) = inf
{

δ ∈ R
∣
∣
∣E
[
v
(
z(ω) − δ

)]
< v(ε)

}
.

If the right-hand side has no solution, we set Tε(z) = +∞.
The risk in expectation quantifies the possibility of large

fluctuations by evaluating the expected value of a predefined
utility or cost function. A trivial choice for utility function is
v(z) = z, where the value of the risk is the smallest number
for which inequality E[z(ω) − δ] ≤ ε holds. For more general
utility functions, we can still relate to this simple inequality by
applying Jensen’s inequality and monotonicity property of the
utility function. It is straightforward to show that Tε is positive
iff E

[
v(z)

]
> v(ε); we refer to [35] for more details. This helps

us to define the following acceptance set:

A =
{

z ∈ L2(R)
∣
∣
∣ Tε(z) < 0

}
(13)

that contains all random variables in L2(R) whose expected
cost E[v(z)] is less than cost threshold v(ε). In the following,
we discuss two important and relevant utility functions for risk
analysis in dynamical systems.

Quadratic Utility: For scalar random variables, the quadratic
utility function is v(z) = z2 over nonnegative real numbers.
The value of the risk in this case represents the smallest value
δ for which random variable z stays in a ball with center δ and
radius v(ε). Depending on the application, the quadratic form
of the output (7) relates to the potential or kinetic energies of
the system [10].

Exponential Utility: For scalar random variables, the expo-
nential utility function is v(z) = eβz for some parameter β > 0.
This function is monotonically increasing over all real numbers
and close in spirit to the entropic risk measure [35].

Proposition 2: The risk in expectation Tε : L2(R) → R as
in Definition 4 satisfies the following properties.

1) Tε(z + m) = Tε(z) + m for all m ∈ R.
2) Tε(z) is a convex function of z ∈ A.
3) z1 ≤ z2 implies Tε(z1) ≤ Tε(z2).
4) For all nonnegative z ∈ A, it follows that:

Tε(αz) ≥ αTε(z) + (α − 1)ε
for all α ≥ 1, and for all nonpositive z ∈ A, we have

Tε(αz) ≤ αTε(z) − (α − 1)ε
for all α ∈ [0, 1].

Property (1) is the equivalent of Property (2) in Proposition 1.
It explains that adding fixed numbers (with no uncertainty) does
not affect the value of the risk in expectation. The convexity
property of Property (2) holds within the acceptance set (13)
and can be generalized to any acceptance set is convex [35].
Property (3) means that risk in expectation is monotonically
increasing. According to property (4), the risk measure enjoys
a weak positive homogeneity property that holds over a subset
of A.4

VI. RISK ASSESSMENT OF A SINGLE EVENT

Suppose that the network observable is scalar

yt = cT xt (14)

with c ∈ Rn . According to (12), yt ∼ N (μt, σ
2
t ) with:

μt = E

[ n∑

k=1

cQ
k

[
ϕk (t)φQ

k (0) +
∫ 0

−τ

ϕk (t + s)φQ
k (s) ds

]
]

(15)

σ2
t = b2

n∑

k=1

(cQ
k )2
∫ t

0
ϕ2

k (s) ds (16)

where cQ = [cQ
1 , . . . , cQ

k ]T and φQ (t) = [φQ
1 , . . . , φQ

k ]T are the
corresponding vectors c and φ(t) represented w.r.t. the basis
formed by the columns of Q = [q1 | . . . |qn ], in which qk is
the kth Laplacian eigenvector, and ϕ1 , . . . , ϕn are the diagonal
elements of the principal matrix Φ.

Lemma 2: For every time instant t, functions μt = μt(Q)
and σt = σ2(Q), as they are defined by (15) and (16), are
eigenspace invariant, i.e., for all orthonormal matrices Q1 and
Q2 for which Q1ΛQT

1 = Q2ΛQT
2 , we have

μt(Q1) = μt(Q2) and σt(Q1) = σt(Q2).

4Graphic illustrations of Rε and Tε are reported in [23].
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Theorem 1: Suppose that process x = {xt}t∈[−τ ,T ] is the
solution of (6) and the network observable is scalar as in (14).
Then, the risk of large fluctuations in probability is given by

Rε(|yt |) =
√

2σtSε

(
μt√
2σt

)
+ μt (17)

where Sε(·) is defined by (3), and the risk of output fluctuations
violating a utility threshold can be calculated as follows:

1) when u(z) = z2

Tε(|yt |) =

{
μ|yt | −

√
ε2 − σ2

|yt |, if ε ≥ σ|yt |

+∞, otherwise
(18)

2) when u(z) = eβz for some β > 0

Tε(|yt |) =
βσ2

t

2
+

ln
(
κ(μt, σt)/2

)

β
− ε (19)

in which

μ|yt | = σt

√
2
π

e
−

μ 2
t

2 σ 2
t − μt erf

(
−μt√
2σ2

t

)

σ2
|yt | = μ2

t + σ2
t − μ2

|yt |

κ(μt, σt) =
[
1 − erf

(
− μt√

2σt

− βσt√
2

)]
eβμt

+
[
1 + erf

(
− μt√

2σt

+
βσt√

2

)]
e−βμt

and μt and σt are defined by (15) and (16).
In case of no time-delay, i.e., τ = 0, the eigensolutions of

the nominal system take simple forms ϕk (t) = e−λk t , for k =
2, . . . , n. This allows us to derive a more explicit form for the
variance

σ2
t = b2

n∑

k=2

(cQ
k )2 1 − e−2λk t

2λk
.

When τ > 0 and t < ∞, the risk expressions in Theorem 1 do
not admit more tractable representations in general. However,
toward the end of this section, we show that in steady state one
can obtain more explicit formulas for systemic risk measures;
we also refer to [20] for more details.

The steady-state behavior of systemic risk measures can be
investigated by letting t tend to infinity. According to Lemma 1,
if output matrix C is orthogonal to the vector of all ones, then
y = limt→∞ yt will belong to L2(R), i.e., with finite variance,
denoted as σ. If cT 1n = 0, then μt vanishes exponentially fast.
In steady state, the transient effect of initial conditions dis-
appears and other origins of large volatility and fluctuation
in network observables reveal themselves, e.g., communica-
tion topology, time-delay, and the diffusion coefficient b. The
steady-state risk analysis uncovers how the exogenous noise
propagates throughout the network, is amplified by various fac-
tors, and results in rapid and unpredictable variations in network
observables.

Theorem 2: Suppose that stochastic process x = {xt}t≥−τ

is the solution of (6) and the network observable is scalar as in
(14) and the output matrix satisfies cT 1n = 0. Then, the risk of
large fluctuations in probability in steady state is given by

Rε(|y|) =
√

2Sε(0)σ (20)

in which

σ2 =
1
2
b2

n∑

k=2

cos(λk τ)
λk

(
1 − sin(λk τ)

) (cQ
k )2 (21)

where λk is the kth nonzero Laplacian eigenvalue. The risk of
output fluctuations violating a utility threshold in steady state
with respect to

1) quadratic utility v(x) = x2 is

Tε(|y|) =

⎧
⎨

⎩

√
2
π σ −

√
ε2 −

(
1 − 2

π

)
σ2 , if ε ≥ σ

√
1 − 2

π

+∞, otherwise
(22)

2) exponential utility v(x) = eβx for some β > 0 is

Tε(|y|) =
βσ2

2
+

ln
(
1 + erf( βσ

2 )
)

β
− ε. (23)

The expression for variance (21) can be equivalently written
in the following compact form:5

σ2 =
1
2
b2Tr

[
LoL

† cos(τL)
(
Mn − sin(τL)

)†]
(24)

where Lo = ccT . In the following, we discuss some of the
important and useful examples of scalar network observables.

1) Deviation of a single state from the average: Suppose
that we are interested in the observing state of the agent i. The
deviation from average of xi can be obtained by choosing the
ith column of the centering matrix Mn as the output matrix, i.e.,
c = mi . A direction calculation reveals that

cQ
k =

{
0, if k = 1

mT
i qk , if k = 2, . . . , n.

2) Pairwise deviation: When one is interested in characteriz-
ing the volatility of the disagreement between two specific fixed
agents, say agents with labels i and j, we choose output matrix
c = ei − ej . In this case

cQ
k =

{
0, if k = 1

(ei − ej )T qk , if k = 2, . . . , n.

3) Deviation from average of immediate neighbors: Com-
paring state of each agent with average of its own adjacent
neighbors is another meaningful observable for network (6). In
this case, the components of the output matrix are defined as

cQ
k =

{ 0, if k = 1

qT
k

(
ei − 1

ni

∑
j∼i ej

)
, if k = 2, . . . , n

where {j|j ∼ i} is equal to set {j|{i, j} ∈ E} and ni is its
cardinality.

In all these scenarios, the value of the systemic risk mea-
sure Tε(|yt |) and Rε(|yt |) can be calculated using Theorem 1
with statistical parameters defined in (15) and (16). Moreover,
Theorem 2 shows that value of the systemic risk measure depend
on the Laplacian spectrum.

5The Moore–Penrose pseudoinverse of the matrix L is denoted by L†.
For a matrix X ∈ Rn×n , the matrix-valued functions of matrices cos(X )

and sin(X ) are defined as cos(X ) =
∑∞

k=0
(−1)k

(2k )! X 2k and sin(X ) =
∑∞

k=0
(−1)k

(2k+1)! X
2k+1 .
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Remark 2: When the output matrix is c = 1
n 1n , the network

observable becomes the average of all states. It follows that
cQ
1 = 1√

n
and cQ

k = 0 for every k > 1. In this case, the mean
and variance of the scalar observable reduces to

μt =
1√
n

[
φQ

1 (0) +
∫ 0

−τ

φQ
1 (s) ds

]
and σ2

t =
b2

n2 t. (25)

Using these formulas, one can compute the value of transient
systemic risk measures Tε(|yt |) and Rε(|yt |) according to The-
orem 1. Since network (6) has a marginally stable mode corre-
sponding to λ1 = 0, the variance σ2

t diverges as t grows (see
also Lemma 1). This implies that all states fluctuate around their
average and eventually diverge. This phenomenon is so-called
“flocking to default” in finance and economy literature; we refer
to [5, ch. 17] for a discussion. Furthermore, one also observes
that the statistical parameters in (25) are independent of the
network topology and time-delay. We conclude this section by
investigating effects of time-delay on systemic risk measures.

Theorem 3: Suppose that the conditions of Theorem 2 are
satisfied. Then, systemic risk measures (20), (22), and (23) are
strictly increasing functions of time-delay.

Remark 3: The class of the systemic risk measures in this
paper exhibit some idiosyncratic behavior in the presence of
time-delay. It can be easily shown that the variance (21) is a
convex function of Laplacian eigenvalues. Systemic risks are
in turn increasing functions of variance, which is not mono-
tonically decreasing with respect to connectivity. This imposes
counter-intuitive challenges in design of optimal networks with
respect to this class of risk measures. For instance, increasing
connectivity may deteriorate the systemic risk of the network
(6) and sparsification may improve it. Fig. 1 depicts behavior
of each summand in (21). The unorthodox behavior of risk and
its interplay with connectivity and performance in time-delay
networks is highly counter-intuitive and requires careful inves-
tigation. In Section VIII, we characterize an intrinsic tradeoff
that explains this behavior.

VII. JOINT RISK ASSESSMENT OF MULTIPLE EVENTS

The extension of the risk for the network (6) with vector-
valued output observables

yt = Cxt =
[
cT

1 xt , . . . , cT
q xt

]T
(26)

is a problem with different approaches, each of which highlights
the problem from a different perspective. In this section, we
introduce the most important multivalue risk measures for the
steady-state distribution of |yt | =

[
|y1 |, . . . , |yq |

]T
with yk =

cT
k xt . We recall from Section IV that in steady state

y ∼ N (0,Σ)

iff 1n is in the kernel of the output matrix C.
When different types of observations are used for risk analysis

in a dynamical network, systemic risk measure becomes a vec-
tor, where every element of that vector corresponds to the value
of the risk of an event that has a similar nature to the correspond-
ing observation. For example, suppose that our goal is to evaluate
the risk using vector of observables yt = [y1(t), y2(t), y3(t)]T ,
where stochastic variable y1 measures deviation of a single state
from the average of all states, y2 shows pairwise deviation be-
tween two given agents, and y3 gives deviation of a single state
from the average of its immediate neighbors.

Fig. 2. Geometry of WRε ( |y |) is depicted in two dimensions. Since
ε1 + ε2 = ε, if ε1 → ε − , then ε2 → 0+ , and vice versa. By ∂WRε we
understand the boundary of set WRε ( |y |) , which is evidently bounded.

A. Risk of Large Fluctuations in Probability

The joint risk in the probability measure is a vector-valued
operator Rε : L2(Rq ) → Rq that is defined by

Rε(|y|) = inf
{

δ ∈ Rq
+

∣
∣
∣P
(
|y| � δ

)
≥ 1 − ε

}
(27)

in which infimum operates on elements of δ. Obtaining a closed-
form expression for the joint risk in probability is particularly
difficult. To see this, we observe that (27) is equivalent to a
joint chance constraint optimization problem [36]. The solution
set is not a singleton. In fact, the set of all optimal vectors δ
constitute a Pareto set. Moreover, problems of this kind that in-
volve the quantification of joint-dependent events are typically
difficult to solve. One way to compute solution of such multiob-
jective optimization problems is via Monte Carlo sampling [37],
[38]. Robust Optimization techniques propose analytic approx-
imations to this problem by decomposing the joint constraint
problem into a problem with individual chance constraints [36].
By applying the latter approach to (27), we obtain the next result.
Let us define the vector of individual risk measures by

Rε(|y|) =
[
Rε(|y1 |), . . . ,Rε(|yq |)

]T
.

Theorem 4: For dynamical network (6) with vector of ob-
servables (26), the joint vector-valued risk measure (27) satisfies
the inclusion

Rε(|y|) ⊆ WRε (|y |) (28)
where

WRε (|y |) =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

δ1

...

δq

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

Rε(|yi |) ≤ δi ≤ Sε i
(0)

Sε (0) Rε(|yi |)
for all εi ∈ (0, 1) that satisfy:

ε1 + · · · + εq = ε

⎫
⎪⎪⎬

⎪⎪⎭
.

(29)

Fig. 2 illustrates geometric shape of WRε (|y |) for q = 2. The
set of solutions that constitute Rε(|y|) lies within a bounded
set that is characterized by Rε(|y|).

When all output observables show evolution of similar
stochastic events, a single safety margin can be employed to
assess the systemic risk throughout the network. For instance,
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all observables are similar or homogenous if every yk , for
k = 1, . . . , q, measures either deviation of a single state from
the average of all states, pairwise difference between two agents,
or deviation of a single state from the average of its immediate
neighbors. In this case, systemic risk measure becomes scalar
valued according to

Rε(|y|) = inf
{

δ ∈ R+

∣
∣
∣P
(
|y| � δ1q

)
≥ 1 − ε

}
. (30)

The next result is a direct consequence of Theorem 4.
Corollary 1: The scalar-valued joint systemic risk measure

(30) for dynamical network (6) with observables (26) is bounded
by

max
1≤i≤q

Rε(|yi |) ≤ Rε(|y|) ≤ min
1≤i≤q

υiRε(|yi |) (31)

where υi = Sε(0)−1Sεi
(0) for all positive εi’s that satisfy (29).

B. Risk of Large Fluctuations in Expectation

Suppose that function v : Rq → R is convex and monotoni-
cally increasing on the cone of positive orthant, i.e., if x � y,
then v(x) ≤ v(y). The joint risk in expectation is an operator
T ε : L2(Rq ) → Rq that is defined by

T ε(|y|) = inf
{

δ ∈ Rq
∣
∣
∣E
[
v(|y| − δ)

]
≤ v(ε)

}
(32)

where δ = [δ1 , . . . , δq ]T is the vector of safety margins.
Theorem 5: Let us assume that 1n ∈ ker(C) for dynamical

network (6) with observables (26). The constraint E
[
v(|y| −

δ)
]
≤ v(ε) in (32) with v(z) = zT z, is feasible iff r > 0 in

which

r = ε2 −
(

1 − 2
π

) q∑

i=1

σ2
i .

Moreover, the joint risk in expectation assumes a set value that
is given by

T ε(|y|) =

{√
2
π

σ + z
∣
∣
∣
∣ z � 0 : ‖z‖ =

√
r

}

⊂ Rq

where σ = [σ1 , . . . , σq ]T .
Theorem 6: Suppose that assumptions of Theorem 5 hold.

For all safety margins ε1 , . . . , εq > 0 that satisfy

ε2
1 + · · · + ε2

q = ε2

we have that
[
Tε1 (|y1 |), . . . , Tεq

(|yq |)
]T ∈ T ε(|y|).

When all observed stochastic events are homogeneous, the
joint risk in expectation (32) reduces to a scalar as follows:

Tε(|y|) = inf
{

δ ∈ R
∣
∣
∣E
[
v(|y| − δ1q )

]
≤ v(ε)

}
. (33)

The risk measure Tε(|y|) is the smallest number δ that can be
added to every element of vector |y| such that the cost of the
resulting vector stays below the predetermined safety threshold.

Corollary 2: Let us assume that 1n ∈ ker(C) for the dy-
namical network (6) with observable (26). Let ε2 >

∑
j σ2

j −
2
π

(∑
j σj

)2
, for σj the standard deviation of yj . Then, the risk

in expectation as in (33) with the quadratic utility function sat-
isfies

Tε

(
|y|
)

=

√
2
π

q∑

j=1

σj −

√√
√
√ε2 −

q∑

j=1

σ2
j +

2
π

( q∑

j=1

σj

)2

.

For vector-valued risk measure in expectation w.r.t. the expo-
nential utility function, we may use the utility function

v(z) = eβ (z1 + ···+zq ) .

The definition of the risk measure in this case is given by

Tε(|y|) = inf
{

δ ∈ Rq
∣
∣
∣E
[
eβ
∑

i (|y i |−δi )
]
≤ eβε

}
. (34)

Following a simple continuity argument, it can be shown that
the vector of risk Tε(|y|) = δ = (δ1 , . . . , δq ) satisfies

q∑

i=1

δi =
1
β

ln
(

E
[
eβ
(∑

i (|y i |− 1
q ε
)])

. (35)

The calculation of the right-hand side of (35) becomes signifi-
cantly harder as it involves the calculation of functions of joint
random variables, which is beyond the scope of this paper.

Remark 4: The vector-valued risk metrics, enjoy similar
functional properties with the scalar risk metrics of Section V.
Indeed, Propositions 1 and 2 can be appropriately modified and
extended to the vector-valued risk, along the lines of [39]. The
details are omitted due to space limitation.

VIII. FUNDAMENTAL LIMITS AND TRADEOFFS

The presence of time-delay induces fundamental limits and
tradeoffs on the least achievable risk values for the class of the
dynamical network (6) in steady state. We characterize some
Heisenberg-like inequalities and reveal inherent interplay be-
tween the systemic risk measure and effective graph resistance
- the standard measure of network connectivity.

The first limit occurs due to the stability condition of
Assumption 2 that can be quantified as the following lower
bound on the total effective resistance of the coupling graph of
the network

ΞG >
2n(n − 1)τ

π
. (36)

This implies that in the time-delay network (6), the feedback
structure (represented by the weighted graph G) may not have
an overall strong couplings beyond the aforementioned limit,
e.g., feedback loops may not have very large gains and/or dense
topology especially when all gains are equal (which corresponds
to unweighted G).

Theorem 7: Let observable of the dynamical network (6) be
scalar as in (14), i.e., q = 1. Then, there is a hard limit on
the least achievable value for the risk of large fluctuations as
follows:

Rε(|y|) ≥ κ∗
√

τ (37)

where

κ∗ = ‖c‖ bSε(0)
√

1 − sin(z+)

and z+ is the positive solution of equation cos(z) = z. Further-
more, the least achievable value for the risk of high volatility
cannot be improved beyond some lower bound that is charac-
terized by

1) for the quadratic utility function

Tε(|y|) ≥
√

2
π

σ∗ −
√

ε2 −
(

1 − 2
π

)
σ2
∗

2) for the exponential utility function

Tε(|y|) ≥
βσ2

∗
2

+
ln
(
1 + erf( βσ∗

2 )
)

β
− ε
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where

σ∗ = b‖c‖
√

τ

2
(
1 − sin(z+)

) . (38)

The lower limit can be achieved by graphs with the Lapla-
cian spectrum that satisfy λiτ = z+ for all i > 1, i.e., a com-
plete graph over n nodes with coupling weights kij ≈ 0.7391

nτ .
Inequalities (36) and (37) represent hard limits as their lower
bounds are independent of the coupling structure of the net-
work; by fixing ε they only depend on the size of the network
and time-delay. When there is no time-delay, i.e., τ = 0, hard
limits disappear. Because in no time-delay case, one may si-
multaneously improve the risk and connectivity by arbitrarily
increasing the feedback gains. This shows that time-delay is the
main reason for the emergence of these fundamental limits on
the risk and connectivity.

Theorem 8: Let observable of the dynamical network (6) be
scalar, i.e., q = 1. There is an inherent fundamental tradeoff
between least achievable values for the risk of large fluctuations
and network interconnectivity that can be quantified as follows:

Rε(|y|) ·
√

ΞG > ϑ∗
√

nτ (39)

where ΞG is the total effective resistance of the coupling graph
of the network and

ϑ∗ = ‖c‖bSε(0)
√

p†

with p† = min{p∗2 , . . . , p∗n} in which positive numbers p∗k is the
minimum of

pk (x) =
[
(k − 1) +

2(n − k)
π

x

]
cos(x)

x2(1 − sin(x))
over x ∈ (0, π/2) for all k = 2, . . . , n. Moreover, fundamental
tradeoffs emerge between the least achievable values for the
volatility risk and network connectivity in the following sense:

(
Tε(|y|) + ε

)√
ΞG > Δ(τ)

in which

Δ(τ) =
(√

2
π

+
1
2ε

(
1 − 2

π

)
σ∗

)
�∗

for the quadratic utility function and

Δ(τ) =
β

2
σ∗�∗ +

erf(βσ∗/2)
β

n(n − 1)τ
π

for the exponential utility function, where

�∗ = ‖c‖|b|
√

nτ

2
p†. (40)

Inequality (39) implies that network (6) will be prone to
higher levels of risk if the connectivity enhances, e.g., by adding
new coupling links and/or increasing the feedback gains. The
origin of this intrinsic tradeoff is time-delay; inequality (39)
would be trivial if τ = 0. We observe that by increasing τ ,
while preserving the stability, interplay between the systemic
risk and the network connectivity becomes more apparent. The
key observation is that by fixing the network size, time-delay
and ε inequalities (37) and (39) remain true for all dynamical
networks (6) with arbitrary graph topologies and output matri-
ces c; in other words, these fundamental limits and tradeoffs
are universal. In Fig. 3, we verify tightness of our bounds us-
ing extensive simulation results. The blue dots are numerically
calculated based on the following procedure: 1) randomly gen-
erate a connected graph that satisfies the stability condition in
Assumption 2 ; 2) randomly generate an output vector c; and 3)

Fig. 3. Fundamental and tradeoff bound curves for the systemic risk.
Blue dots are randomly generated graphs over n = 8 agents, for fixed
τ = 0.4 and output vector c. The red vertical and horizontal lines are
the hard limits, and the dashed line is the tradeoff principle. The orange
curve illustrates a particular family of graphs that achieve the tradeoff
curve, asserting that all three bounds are sharp.

compute the scaled pair (
√

ΞG ,Rε(ȳ))/(
√

2Sε(0)). The orange
color curve in Fig. 3 illustrates a particular family of complete
graphs with parameterized identical coupling strengths that is
specifically constructed to highlight sharpness of our bounds in
(37) and (39).

Theorem 9: Let us consider the dynamical network (6) with
vector of observables (26). There is an intrinsic fundamental
tradeoff between the least achievable values for the joint vector-
valued risk measure on Rq

+ and network interconnectivity that
can be characterized by inequality

Rε(|y|) ·
√

ΞG � Θ∗
√

nτ (41)

in which Θ∗ = bSε(0)
√

p†
[
‖c1‖, . . . , ‖cq‖

]T
.

Proof of this theorem is based on the results of Theorems 4
and 8 and is omitted.

Corollary 3: Suppose that 1n ∈ ker(C) for the dynamical

network (6) with output matrix C =
[
c1 , . . . , cq

]T
. The vector-

valued joint risk in expectation (32) cannot be improved beyond
some hard limits that are characterized as lower bounds in the
following inequalities.

1) For quadratic utility function v(z) = zT z, it follows that:

T ε(|y|) �
√

2
π

σ∗ − 1q

√

ε2 −
(

1 − 2
π

)
‖σ∗‖2

where σ∗ = [σ∗
1 , . . . , σ

∗
q ]

T with

σ∗
i = ‖ci‖b

√
τ

2
(
1 − sin(z+)

)

and z+ is the positive solution of equation cos(z) = z.
2) For exponential utility function v(z) = eβ (z1 + ...+zq ) , it

holds that

1T
q T ε(|y|) ≥ b

√
τ

π
(
1 − sin(z+)

)
q∑

i=1

‖ci‖ − ε.
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TABLE I
EXPLICIT FORMULAS FOR SYSTEMIC RISK MEASURE OF INDIVIDUAL EVENTS

The function f (x) is defined in (10). For a detailed analysis on the derivation of the formulas, we refer to [23].

Fig. 4. (Left) Fluctuation risk of a complete graph as a function of the
time-delay τ . Here, ε = 0.01 and Kn , n = 2, . . . , 50. (Right) Fluctuation
risk on ring graphs in terms of the network size. A remarkable qualita-
tive distinction appears between graphs with odd and graphs with even
number of agents.

IX. EXPLOITING GRAPH TOPOLOGY

We show that for some graph topologies, the value of the
systemic risk measure can be calculated explicitly. Our focus
will be only on the risk in probability with respect to de-
viation of a single state from the average, where similar re-
sults can be obtained for other types of observations as well
as risk in expectation. In order to exploit the graph structure
and determine how risk scales with the network size, we con-
sider the class of the dynamical network (6) with unweighted
coupling graphs. The results of this section are summarized
in Table I.

Complete graph: Due to the perfect symmetry of a complete
graph Kn , all elements of the vector of the joint fluctuation
risk measure are identical and the risk measure reduces to (30).
The network is marginally stable if τ < π

2n , where this region
shrinks as n grows. For two given linear consensus networks (6)
with coupling graphs Kn1 and Kn2 and n1 < n2 , there exists

a critical time-delay τ ∗ < π
2n2

such that R(2)
ε (|y|) ≤ R(1)

ε (|y|)
for all τ ≤ τ ∗, andR(1)

ε (|y|) < R(2)
ε (|y|) for all τ ∗ < τ < π

2n2
.

The phenomenon is graphically illustrated on the left plot of
Fig. 4. In a more simple language, networks with larger complete
graphs are safer than smaller ones, and as time-delay increases,
there is a transition point beyond which networks with smaller
complete graphs are safer.

Wheel graph: Let us label the central node of the wheel
graph Wn+1 by 1 and the remaining nodes on the circum-
ference by 2, . . . , n + 1. The largest Laplacian eigenvalue is
λn+1 = n + 1, which implies that network is marginally sta-
ble if τ < π

2(n+1) . The symmetric structure of Wn+1 implies
that Rε(|y2 |) = . . . = Rε(|yn+1 |). According to explicit ex-
pressions for risk measures in Table I, we can verify6 Rε(|y|1) <
Rε(|y|i) for all i = 2, . . . , n + 1. Thus, the central node in a
dynamical network with a wheel graph is riskier than the sur-
rounding nodes.

Complete Bipartite graph: Let us denote each side of the
complete bipartite graph Kn1 ,n2 by G1 and G2 that each has
n1 and n2 nodes, respectively. Nodes at each side are only
connected to nodes on the other side. The total number of nodes
is n = n1 + n2 and let us assume that n1 ≤ n2 . In this case,
the network (6) is marginally stable iff τ < π

2n . The symmetric
topology of Kn1 ,n2 entails that all Rε(|y|i) belonging to one
side (either G1 or G2) are identical. We may categorize the set
of complete bipartite graphs into two subclasses: graphs with
n1 = 1 and the ones with n1 > 1. The first class contains all
star graphs K1,n−1 , where G1 consists of only node with label
1 and G2 contains all nodes with labels 2, . . . , n. From Table I,
it is straightforward to verify that

Rε(|y|1) > Rε(|y|j )
for all nodes j ∈ {2, . . . , n} in subgraph G2 . Similar to the
wheel graph, the central node in a star graph attains the high-
est risk value among all nodes in the network, regardless of
the time-delay value. When n1 > 1, from Table I and some el-
ementary analysis, it can be shown that there exists a unique
τ ∗ = τ ∗(n1 , n2) such that for all i in subgraph G1 and all j in
subgraph G2 the following inequalities hold:

Rε(|y|i) ≤ Rε(|y|j ), for 0 ≤ τ ≤ τ ∗

Rε(|y|j ) < Rε(|y|i), for τ ∗ < τ <
π

2n
.

6It can be shown that
Rε (|y|i )
Rε (|y|1 )

<
1
n2 +

n2 − 1
n2

cos(λ∗τ )
1 − sin(λ∗τ )

1 − sin((n + 1)τ )
cos((n + 1)τ )

≤ 1

for all i = 2, . . . , n + 1, where λ∗ is the maximizer of cos(λτ )
1−sin(λτ ) over λ ∈

{
3 − 2 cos(2π(k − 1)/n) | k = 2, . . . , n

}
. For details, we refer to [23].
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Fig. 5. Risk of large fluctuation in probability for bipartite and ring graph topologies. (a) Illustration of the systemic risk on K1 ,4 and K2 ,8 . The first
example is the star graph. The central node is the riskier one. The second scheme has a group of two and eight nodes, respectively. When n1 > 1,
we observe that the small group is safer than the large group for small time-delay, but riskier than the large group for large time-delay. (b) Systemic
risk for P6 and P7 . For small time-delays, risk increases for nodes that are closer to the center. For large time-delays, it appears that nodes with
smaller risk are the centering ones. When n is odd and τ approaches the critical delay value, the risk of the central node increases toward infinity
at a significantly lower rate than the rest of the network.

For n1 > 1, we conclude that, unlike graphs with the star topol-
ogy, time-delay plays an active role in determining which of
the subgraphs G1 or G2 contains riskier nodes. This point is
illustrated with two examples in Fig. 5(a).

Path graph: In networks for which agents are connected to
a uniformly bounded number of neighbors, such as path and
ring graphs, the marginal stability range for time-delay does not
shrink to zero as the network size grows. A network with the path
graph topology Pn is marginally stable iff τ < π

4(1 + cos( π
n )) . A

simple calculation reveals that the network is marginally stable
for all n iff τ < π

8 . From Table I, it can be verified that

Rε(|y|i) = Rε(|y|n−i+1)

for all i = 1, . . . , n.
There exists a critical time-delay τ ∗ in the marginal stability

range that for all time-delays τ < τ ∗ agents residing toward the
tails of the path graph are safer than the ones located closer to
the center. In this case, central nodes are more prone to large
fluctuations. When τ > τ ∗, agents closer to the center become
safer and the ones that are closer to the tails become riskier. In
conclusion, agents residing in the boundaries are the safest for
small time-delays, and in contrary, agents located in the center
are the safest for large time-delays. When n is odd, there is a
central agent who becomes significantly safer for large time-
delays. Fig. 5(b) illustrates these analytic design rules of thumb
graphically.

Ring graph: The dynamical network (6) with ring graph
topology Rn is marginally stable iff τ < π

4 (1 − cos(2π

(1 − 1
n )))−1 . The symmetric structure of Rn necessitates that

all agents to have identical risk values. In the right plot of Fig. 4,
the value of the systemic risk measure for one of the agents,
which is given in Table I, is drawn for different values of n. One
observes that the systemic risk measure monotonically increases
by n for small time-delays. However, when time-delay increases
and approaches the marginal stability border, networks with odd
number of agents appear safer than networks with even number
of agents.

X. SIMULATIONS

We verify our theoretical findings through two numerical
examples.

Example 1: (Transient Behavior of Risk Measures) Consider
the graph over n = 5 nodes as in Fig. 6 .

Fig. 6. Graph for Example 1. The assigned weights accompany the
edges between nodes, allow a maximum delay of τm ax = 0.1211.

The parameterization of (6) is set as τ = 0.1, b = 0.3 and
the initial conditions are chosen φi(t) = i for t ∈ [−0.1, 0]. The
cutoff value is selected to be ε =

√
0.2.

We will examine the transient risk with the output matrix C =
[1
5 1

T
5 |mT

1 |mT
5 |mT

2 − mT
3 |mT

2 − mT
5 ]. The corresponding

rows are the motion of the average, the deviation of nodes i = 1
and i = 5 from the average as well as the difference between
nodes 2 and 3 and the difference between nodes 2 and 5. The
results are presented in Fig. 7(a) and (b). The risk of the average
of motion becomes unbounded, as predicted. Finally, we notice
a consistent pattern on behavior of risk among the observables
y1 , . . . , y5 : the risk involving nodes with stronger coupling is
systematically smaller than the risk that involves nodes with
weaker coupling, whereas the risk on the pairwise disagreement
between the strongly coupled node 2 and the loosely coupled
node 5 appears to be the highest.

Example 2: We consider a network with 100 agents and an
arbitrary graph topology that satisfies Assumption 1. We will
numerically calculate the value of the steady-state systemic risk
in expectation (22) with respect to output matrix C = M100 as a
function of time-delay in its marginal stability region. This way,
an observable output is assigned to every agents. According to
Theorem 2, the value of the systemic risk measure corresponding
to each agent can be either negative, positive bounded, or infinite
depending on the value of parameter. For a fixed parameter ε and
depending on the value of each agent’s systemic risk measure,
agents can be classified as being safe (negative), marginally safe
(positive), and unsafe (infinite). For this example, we generate
a network whose marginal stability range is τ < π

2λn
= 0.3524.

We consider risk w.r.t. the quadratic utility function with cutoff
threshold ε =

√
0.05. For each class, we also record average

of (weighted) node degrees as a connectivity measure. The left
subplot in Fig. 8 pictures the number of agents in each class for
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Fig. 7. Simulation plots of Example 1. Legend in Fig. 7(a) corresponds to all four plots. (a) Simulated (dot) and analytic (solid line) results for
yt = Cxt . Figure on the left illustrates the variances, and figure on the right, the volatility risk with quadratic utility. For t = 4 to t = 12, the variance
of the orange observable lies above the permissible cutoff value. According to Theorem 1, its risk in quadratic volatility is infinite. Similarly for the
motion of the average (the line) for t ≥ 11. (b) Simulated (dot) and analytic (solid line) results for yt = Cxt . Figure on the left illustrates the volatility
risk with exponential utility and figure on the right illustrates the fluctuation risk.

Fig. 8. Network of Example 2, where τ ∈ [0, 0.35].

every τ ∈ [0, 0.35). The right subplot in Fig. 8 depicts average
of (weighted) node degrees. For small time-delays, the transition
from the safe mode to marginally safe mode starts with those
nodes that have smaller than average degrees (which is about
3.65). For larger time-delays, the transition from marginally
safe mode to the unsafe mode starts with those nodes that have
larger than average degrees. This remarkable phenomenon has
been repeatedly observed for almost all networks with similar
characteristics.

Example 3: We consider a network with 100 agents and an
arbitrary graph topology that satisfies Assumption 1, where
the output matrix is the incidence matrix of the graph, i.e.,
C = B100 . The generated network is marginally stable for
τ < 0.3415. The number of observable outputs is 4950 and the
results of our simulations are illustrated in Fig. 9 . The effective
graph resistance between nodes i and j

ΞG(i, j) = [B100L
†BT

100 ]ij
is used as a connectivity measure.7 For two distinct agents, the
larger the effective resistance between them, the weaker these
agents are connected to each other. Depending on the value of
the risk measure with quadratic volatility for each individual
event |yi | > δi , for i = 1, . . . , 4950, these events can be labeled
as being safe (negative), marginally safe (positive bounded), and
unsafe (infinity). The subplots in Fig. 9 asserts that: for small
time-delays, the transition from the safe mode to marginally
safe mode happens between those pair of nodes that maintain
a larger than average effective resistance (i.e., lower than aver-
age coupling strength), where the average effective resistance
is about 0.544. For larger time-delay, the transition from the
marginally safe mode to unsafe mode occurs for those pair of
nodes that have a lower than average effective resistance (i.e.,
higher than the average coupling strength).

7Here, L† is the Moore–Penrose pseudoinverse of L and the sum over all i
and j equals ΞG as in (2). More details can be found in [26].

Fig. 9. Network of Example 3, where τ ∈ [0, 0.34].

XI. DISCUSSION

The focus of this paper is on the risk of large fluctuations
in probability and in expectation. The value of these two types
of risk measures capture the behavior of relevant microscopic
features of a network. Moreover, it turned out that their values
depend on the network topology through the Laplacian spec-
trum and its eigenvectors. To investigate the usefulness of other
types of risk measures remains an open problem and is one
of our future research directions. The results of this paper are
particularly useful to develop design algorithms to optimize the
network connectivity, performance, and risk in the presence of
external noise and time delay. The design of this class of net-
works involves only three main scenarios: growing by adding
new feedback interconnections, sparsification (eliminating) of
the existing feedback loops, and reweighing feedback gains.
Other design objectives can be obtained by combining these
three design procedures. Our particular interest is to design net-
works that strike a balance among connectivity, performance,
and risk. This is one of our current research directions.

APPENDIX

Proof of Lemma 1: Direct calculations yield

CΣtC =
∫ t

0
CQΦ(t − s)QT BBT QΦ(t − s)QT C ds

= b2CQ

∫ t

0
Φ2(t − s) ds (CQ)T

where ΦL (t) = QΦ(t)QT in which Φ(t) = diag(ϕ1(t), . . . ,
ϕn (t)) and ϕk ’s are eigensolutions of the unperturbed net-
work. By letting C = [c1 , . . . , cN ]T , the elements of CΣtC

T

are given by

[CΣtC
T ]ij = b2

[ ∫ t

0

∑

k

(cT
i qk )ϕ2

k (t − s)(cT
j qk ) ds

]

ij

.
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According to our assumptions, it follows that ϕ1(t) ≡ 1
and all ϕk (t) for k = 2, . . . , n are exponentially fast van-
ishing functions. Therefore, matrix CΣtC is bounded iff∑

k (cT
i q1)(cT

j q1) = 0 for all i, j ∈ V . But for i = j, we have
(cT

i q1)2 = 0 for all i. The reverse part is trivial. �
Proof of Proposition 1
1) If z is independent of ω ∈ Ω, then P (z > δ) = 0 for any δ

arbitrarily close to z from the right. In view of ε ∈ [0, 1),
the definition of Rε(z) imposes the infimum of the sum
that is achieved when all δ attain the infimum value which
is z.

2) Note that Rε(z + m) = inf{δ |P
(
z(ω) + m > δ

)
< ε}

is equivalent to inf{δ |P
(
z(ω) > δ − m

)
< ε}.

For δ′ := δ + m, we obtain Rε(z + m) = inf{δ′ +
m |P

(
z(ω) > δ′

)
< ε} = m + inf{δ′ |P

(
z(ω) >

δ′
)

< ε} = Rε(z).
3) Let z1 , z2 ∈ L2 with z1 ≤ z2 almost surely. Then, {z1 >

δ} ⊆ {z2 > δ} that implies P
(
z1 > δ

)
≤ P

(
z2 > δ

)
.

The decrease of δ on z1 to achieve ε is smaller than the
corresponding decrease on z2 . So, the risk of z1 cannot
be larger than the risk of z2 .

4) For any λ > 0, P
(
λy > δ

)
= P

(
y > δ/λ

)
and simple

substitutions yield the result.
5) Let z = αx + (1 − α)y with x, y ∈ L2 and P

(
x ≤ y

)
=

p, P
(
x > y

)
= 1 − p and α ∈ [0, 1]. Then

P
(
z > δ

)
= P

(
z > δ|x ≤ y

)
p + P

×
(
z > δ|x > y

)
(1 − p).

If x ≤ y, then P
(
z > δ

)
≤ P (y > δ

)
, while, if x ≥ y,

then P
(
z > δ

)
≤ P (x > δ

)
. Using the last two inequal-

ities and property 3), the result follows. �
Proof of Proposition 2:
1) Follows similarly with 2) of Proposition 1.
2) Due to the convexity and monotonicity properties of v, it

is easy to verify that A is convex. Now let {zi}i=1,2 ∈ A
and {δi}i=1,2 ≤ 0 the corresponding risk values. In view
of 1), it holds that Tε(zi − δi) = 0, i.e., zi − δi ∈ A and
by convexity

α(z1 − δ1) + (1 − α)(z2 − δ2) ∈ A.

Again from 1), we get

0 ≥ Tε

(
α(z1 − δ1) + (1 − α)(z2 − δ2)

)

= Tε

(
(αz1 + (1 − α)z2) − (αδ1 + (1 − α)δ2)

)

which yields the result.
3) If z2 ≤ z1 , then z2 − δ ≤ z1 − δ so that z2 − δ ≤ z1 − δ

and v(z2 − δ) ≤ u(z1 − δ). Consequently, the cost δ to
bring v(z2 − δ) closer to v(ε) is smaller than the respec-
tive cost on u(z1 − δ).

4) For every z ∈ B, 3) shows that λz ∈ A as well for λ ≥ 0.
We take following cases on λ.
λ ∈ [0, 1] : Then, λz + 1(1 − λ)ε ∈ A as one can ver-
ify that Tε(1ε) = 0, i.e., ε ∈ A. From 1), Tε(λz) +
(1 − λ)ε = Tε(λz + (1 − λ)1ε) ≤ λTε(z), and solving
for Tε(λz), we obtain the result.
λ ≥ 1 : Then, it follows from λz,1ε ∈ A and properties
1) and 2): Tε(z) + (1 − λ−1)ε = Tε(z + (1 − λ−1)ε) =

Tε(λ−1(λz) + (1 − λ−1)ε) ≤ λ−1Tε(λz). Solving for
Tε(λz), we obtain the result. �

Proof of Lemma 2: We write σ2
t (Q) = b2cT Q

∫ t

0 Φ2(t − s)
dsQT c and with little abuse of notation our focus is on the
matrix Σt = b2Q

∫ t

0 Φ2(t − s) dsQT . This is a diagonal form
for every t and characterizes the algebraic multiplicity of the
eigenvalues ζk = ζk (t) =

∫ t

0 ϕ2
k (t − s) ds, i ∈ V . Fix t and i ∈

V . Note that, we can write σ2
t (Q) = b2∑

k ζk (t)
∑mi

j=1(c
Q
j )2 ,

where mk = mk (t) is the algebraic multiplicity of ζk . We take
the following cases.

mk = 1: The corresponding normal (real) eigenvector is
unique up to a sign. Consequently, cQ 1

k = ±cQ 2
k , therefore,

(cQ 1
k )2 = (cQ 2

k )2 .
mk > 1: ζk (t) is repeated mk times while it produces mk

linearly independent normal eigenvectors that can be chosen
mutually orthogonal. Then, the collection of the eigenvectors of
Q1 that span the subspace of ζk (t), say Qζk

1 and the correspond-
ing collection of Qζk

2 of Q2 are associated with an orthogonal
matrix P such that Qζk

1 = Qζk

2 P . Then
mi∑

j=1

(cQ
ζ k
1

j )2 = cT Qζk

1 (cT Qζk

1 )T = cT Qζk

2 P (cT Qζk

2 P )T

= cT Qζk

2 PPT (Qζk

2 )T c = cT Qζk

2 (cT Qζk

2 )T =
mi∑

j=1

(cQ
ζ k
2

j )2 .

For t and k being arbitrary, the result follows. �
Proof of Theorem 1: From the discussion in Section VI, yt ∼

N (μt, σ
2
t ) with μt and σ2

t as in (15) and (16). Then, |yt | follows
a folded normal distribution with mean μ|yt | and variance σ2

|yt |
defined in the statement of the theorem. For the volatility risks,
we distinguish between v(x) = x2 and v(x) = eβx .

For v(x) = x2 , Tε(|yt |) = inf
{
δ ∈ R : E[(|yt | − δ)2 ] ≤

ε2
}

. Solving for δ the inequality E[(|yt | − δ)2 ] ≤ ε2 , we ob-
tain that the infimum is achieved at the root δ = E[|yt |] −√

ε2 − E
[(
|yt | − E[|yt |]

)2]
. For v(x) = eβx ,

E
[
eβ (|yt |−δ)] ≤ eβε ⇔ δ ≥ 1

β
ln
(
E[eβ (|yt |−ε) ]

)

so Tε(|yt |) = 1
β ln
(
E[eβ (|yt |−ε) ]

)
and the result follows by the

straightforward algebra on

E[eβ |yt |] =
∫ ∞

−∞
eβ |u |e

− (u −μ t ) 2

2 σ 2
t du.

Finally, from (3), we calculate the probability

Rε

(
|yt |
)

= inf
{
δ > 0 : P (|yt | > δ) ≤ ε

}

= inf
{
δ > 0 : P (|yt | ≤ δ) ≥ 1 − ε

}

= inf
{

δ > 0 :
1√

2πσt

∫ δ

−δ

e
− (x −μ t ) 2

2 σ 2
t dx ≥ (1 − ε)

}

= inf
{√

2σtδ + μt > 0 :
1√
π

∫ δ

−δ−2 μ t√
2 σ t

e−u2
du ≥ (1 − ε)

}

=
√

2σtSε

(
μt√
2σt

)
+ μt

where Sε(α) as in (3). �
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Proof of Theorem 2: The condition cT q1 = 0 implies cQ
1 =

0 or equivalently the marginally stable mode to be unobserv-
able at the output. This implies limt→+∞ μt = 0 for μt as in

(15) and limt→+∞ μ|yt | =
√

2
π σ for σ = limt→+∞ σt and σt as

in (16). Of course, σ2 =
∑

k>1(c
Q
k )2
∫∞

0 ϕ2
k (s) ds and we can

combine Theorem 1 together with Equation (10) to derive the
corresponding expressions (20), (22), and (23) for all three risk
measures. �

Proof of Theorem 3: Direct calculations, yield

∂

∂τ
σ2 =

1
2
b2

n∑

k=2

1
1 − sin(λk τ)

(cQ
k )2 > 0.

From this and the fact the systemic risk measures are increasing
functions of σ, it immediately follows that Rε or Tε are strictly
increasing functions of time-delay as well. �

Proof of Theorem 4: We observe that Rε(|y|) is a set-valued
function whose value is equivalent to the solution of the fol-
lowing multidimensional joint chance-constrained optimization
problem:

minimize
δ

δ (45)

subject to: P (|y| � δ) ≥ 1 − ε. (46)

In general, this problem is very difficult to solve even numer-
ically, let alone find closed-form solutions. To overcome the
computational complexity and calculate bounds, we decom-
pose the joint probability constraint (46) into several individual
constraints. Let us consider positive numbers ε1 , . . . , εq such
that (29) holds. Suppose that δ∗k is the optimal solution of the
following optimization problem:

minimize
δk

δk (47)

subject to: P (|yk | ≤ δk ) ≥ 1 − εk (48)

for k = 1, . . . , q is an upper bound for the optimal solution
of (45) and (46). Let us denote δ∗ = [δ∗1 , . . . , δ

∗
q ]

T . From the
Bonferroni inequality [22], we have that

P (|y| � δ∗) ≥
q∑

k=1

P (|yk | ≤ δ∗k ) − (q − 1).

From constraint (29) and (48), it follows that:

P (|y| � δ∗) ≥
q∑

k=1

(1 − εk ) − (q − 1) = 1 −
q∑

k=1

εk ≥ 1 − ε.

This implies that δ∗ is a feasible solution for the optimization
problem (45) and (46). Thus, we conclude that

Rε(|y|) � [δ∗1 , . . . , δ
∗
q ]

T �
[
Rε1 (|y1 |), . . . ,Rεq

(|yq |)
]T

.

By using the fact that Rεk
(|yk |) = Sεk

(0)Sε(0)−1Rε(|yk |), we
can rewrite (31) to conclude that the optimal solution set must
satisfy the upper bound of WRε

. In order to prove the lower
bound, we use an equivalent representation of (27) in the fol-
lowing form:

Rε(|y|) = inf
{
δ ∈ Rq

∣∣P
(
|y1 | > δ1 ∨ . . . ∨ |yq | > δq

)
≤ ε
}
.

Suppose that δ∗∗ is an optimal solution of (45) and (46). Then

P
(
|y1 | > δ∗∗1 ∨ . . . ∨ |yq | > δ∗∗q

)
≤ ε.

From the Fréchet inequality [41]

max
{

P
(
|yk | > δ∗∗k

) ∣∣ k = 1, . . . , q
}

≤ P

(
q∨

k=1

|yk | > δ∗∗k

)

it follows that P
(
|yk | > δ∗∗k

)
≤ ε for all k = 1, . . . , q. Thus, δ∗∗k

is a feasible solution of (47) and (48) and its optimal solution is
upper bounded by δ∗∗k . This implies that the solution set Rε(|y|)
must honor the lower bound of WRε

. �
Proof of Theorem 5: We recall from Section IV that in steady

state y ∼ N (0,Σ) iff 1n is in the kernel of output matrix
C. Thus, constraint E

[
v(|y| − δ)

]
≤ v(ε) in (32) with the

quadratic function is equivalent to
q∑

i=1

σ2
i − 2

√
2
π

q∑

i=1

δiσi +
q∑

i=1

δ2
i ≤ ε2

where σ2
i is the ith diagonal element of the covariance matrix

Σ. From completing the square, we obtain
q∑

i=1

[(
δi −

√
2
π

σi

)2

+
(

1 − 2
π

)
σ2

i

]

≤ ε2 .

The constraint is clearly feasible iff r > 0. The feasible set lies

on the disk
∑q

i=1

(
δi −

√
2
π σi

)2 ≤ r. Taking the infimum over
delta, we arrive at the subset on the sphere that satisfies

both δi ≤ 0 and
q∑

i=1

(
δi −

√
2
π

σi

)2

= r

which identifies with the set in the second part in the statement
of the Theorem, concluding the proof. �

Proof of Theorem 6: It suffices to show that the individual
margins δi , stacked as a vector (δ1 , . . . , δq )T belong to the subset
T ε(|y|) of Rq , as in Theorem 5. We recall from (22) that

Tεi
(|yi |) =

2
π

σi −
√

ε2
i − (1 − 2

π
)σ2

i =: δi

this is equivalent to
(

δi −
√

2
π

σ2
i

)2

= ε2
i −
(

1 − 2
π

)
σ2

i

summing over i = 1, . . . , q, we have
q∑

i=1

(
δi −

√
2
π

σ2
i

)2

=
q∑

i=1

ε2
i −
(

1 − 2
π

) q∑

i=1

σ2
i = r.

�
Proof of Theorem 7: It suffices to calculate the lower bound

of the stead-state variance, σ∗, as in (38). The corresponding
fundamental limits on risk measures are then directly derived.
Recall the steady-state variance σ2 from Theorem 2 and observe
that

σ2 =b2
∑

k>1

(cQ
k )2

2λk

cos(λk τ)
1− sin(λk τ)

≥b2τ

[
inf

z∈(0, π
2 )

f(z)
]∑

k

(cQ
k )2

=
b2τ

2
‖c‖2 1

1 − sin(z+)
=: σ2

∗

as the infimum of f(z), z ∈ (0, π/2) is achieved at z that satis-
fies z = cos(z), and

∑
i(c

Q
i )2 = ‖c‖2 for cQ

1 = 0, Q orthogonal
basis. �

Proof of Theorem 8: For the proof of this result, we will need
the following Lemma.
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Lemma 4: For arbitrary but fixed α, β ≥ 0, the function

pα,β (x) =
(α + βx) cos(x)
x2(1 − sin(x))

attains a unique minimum at (0, π/2).
We calculate

σ2ΞG = b2 n

2

(∑

k>1

(cQ
k )2

λk

cos(λk τ)
1 − sin(λk τ)

)(∑

k>1

1
λk

)

= b2 n

2

∑

k>1

[
(cQ

k )2

λk

cos(λk τ)
1 − sin(λk τ)

k∑

k ′=2

(
1

λk ′

)

+
(cQ

k )2

λk

cos(λk τ)
1 − sin(λk τ)

n∑

k ′=k+1

(
1

λk ′

)]
.

Then

σ2ΞG >
nb2τ 2

2

∑

k>1

(cQ
k )2
(

(k − 1) cos(λk τ)
(λk τ)2

(
1 − sin(λk τ)

)

+
2(n − k)

π

cos(λk τ)
λk τ
(
1 − sin(λk τ)

)
)

=
nb2τ 2

2

∑

k>1

(cQ
k )2pαk ,βk

(λk τ)

≥ ‖c‖2 nb2τ

2
min
k>1

pαk ,βk
(λk τ)

≥ ‖c‖2 nb2τ

2
min
k>1

min
x∈(0,π/2)

pαk ,βk
(x)

where pαk ,βk
(x) is as in Lemma with αk = k − 1 and βk =

2(n − k)
π . Now all the limits in 1)–3) occur after combining (38)

with the results of Theorem 2. For the proof for the tradeoffs,
we work as follows.

1) The mean value theorem yields

Tε + ε =

√
2
π

σ −
√

ε2 −
(

1 − 2
π

)
σ2 +

√
ε2

≥
√

2
π

σ +
1
2ε

(
1 − 2

π

)
σ2 .

By virtue of (38) and (40) then

(
Tε + ε

)
·
√

ΞG >

(√
2
π

+
1
2ε

(
1 − 2

π

)
σ∗

)
ϑ∗

For 2), we recall the inequality ln(1 + x) ≥ x
x + 1 for x > −1

and we calculate
ln
(
1 + erf(βσ/2)

)

β
≥ 1

β
· erf(βσ/2)
1 + erf(βσ/2)

≥ erf(βσ/2)
2β

.

The best bound we can now get is

ln
(
1 + erf(βσ/2)

)

β

√
ΞG >

erf(βσ∗/2)
2β

2n(n − 1)τ
π

.

So
(
Tε + ε

)√
ΞG >

β

2
σ∗ϑ∗ +

erf(βσ∗/2)
2β

2n(n − 1)τ
π

.

For 3), the result follows immediately from (40). �

Proof of Corollary 3: 1) Let δi the ith element of T ε(|y|).
From Theorem 5, it follows that δi ∈

(√ 2
π σi − r,

√
2
π σi + r

)
.

It is straightforward to verify that

δi ≥
√

2
π

σ∗
i −
√

ε2 −
(

1 − 2
π

)∑q

i=1
(σ∗

i )2

where the result follows similarly to the steps in the proof of
Theorem 7. 2) Let us denote T ε(|y|) = (δ1 , . . . , δq ) and recall
(35). From the Jensen’s inequality

ln
(
E
[
eβ (

∑
i (|y i |− 1

q ε)]) ≥ ln
(
eE[β (

∑
i (|y i |− 1

q ε)])

= β

√
2
π

q∑

i=1

σi − βε.

From Theorem 7, we have that σi ≥ b‖ci‖
√

τ
2(1 − sin(z+)) . Sub-

stitute this lower bound to the first inequality of the proof and
apply this bound to (35) to conclude. �

Proof of Lemma 4: It can be easily shown that
limx↑ π

2
pα,β (x) = limx↓0 pα,β (x) = +∞. This means that,

there exists at least one extremum that is a minimum of pα,β (x)
in (0, π/2). Now this extremum must satisfy

p′α,β (x) = − (βx + 2α) cos(x) − βx2 − αx

x2(1 − sin(x))
= 0.

The claim is concluded if we show that, I(x) = (βx +
2α) cos(x) − βx2 − αx, has a unique solution in any com-
pact subset of (0, π/2). At first, note that I(0) = 2α > 0
and I(π/2) = −β

(
π
2

)2 − απ
2 < 0. By the intermediate value

theorem, I(x) attains a root in (0, π/2). If this is not unique,
then I ′(x) = 0 should have a solution in the interval between
the two distinct roots of I(x). Now

I ′(x) = β cos(x) − (βx + 2α) sin(x) − 2βx − α

does not change sign in (0, π/2) if β ≤ α. If β ≥ α, then the
root ξ of I ′(x) satisfies

β cos(ξ) − (βξ + 2α) sin(ξ) − 2βξ − α = 0.

Plugging the aforementioned relation to I(x), we have

I(ξ) =
1
β

(βξ + 2α)2 sin(ξ) + βξ2 + 4αξ +
2α2

β
> 0

Consequently, there exists x′ > 0 such that I(x′) > 0 and
I ′(x) < 0 for x ∈ (x′, π/2) proving that I vanishes at a unique
point in (0, π/2) for every fixed pair of α and β. �
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