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Abstract—This paper develops some basic principles to study au-
tocatalytic networks and exploit their structural properties in order
to characterize their inherent fundamental limits and tradeoffs. In a
dynamical system with autocatalytic structure, the system’s output is
necessary to catalyze its own production. We consider a simplified model
of Glycolysis pathway as our motivating application. First, the properties
of these class of pathways are investigated through a simplified two-
state model, which is obtained by lumping all the intermediate reactions
into a single intermediate reaction. Then, we generalize our results to
autocatalytic pathways that are composed of a chain of enzymatically
catalyzed intermediate reactions. We explicitly derive a hard limit on the
minimum achievable L2-gain disturbance attenuation and a hard limit on
its minimum required output energy. Finally, we show how these resulting
hard limits lead to some fundamental tradeoffs between transient and
steady-state behavior of the network and its net production.

I. INTRODUCTION

Dynamic autocatalysis mechanisms are inherent to several real-
world dynamical networks including most of the planet’s cells from
bacteria to human, engineered networks as well as economic systems
[1]–[4]. In an interconnected control system with autocatalytic struc-
ture, the system’s product (output) is necessary to power and catalyze
its own production. The destabilizing effects of such “positive” auto-
catalytic feedback can be countered by negative regulatory feedback.
There have been some recent interest to study models of glycolysis
pathway as an example of an autocatalytic dynamical network in
biology that generates adenosine triphospate (ATP), which is the
cell’s energy currency and is consumed by different mechanisms in
the cell [1], [5]. Other examples of autocatalytic networks include
engineered power grids whose machinery are maintained using their
own energy product as well as financial systems which operate based
on generating monetary profits by investing money in the market.
Recent results show that there can be severe theoretical hard limits on
the resulting performance and robustness in autocatalytic dynamical
networks. It is shown that the consequence of such tradeoffs stems
from the autocatalytic structure of the system [1], [5], [6].

The recent interest in understanding fundamental limitations of
feedback in complex interconnected dynamical networks from bio-
logical systems and physics to engineering and economics has created
a paradigm shift in the way systems are analyzed, designed, and
built. Typical examples of such complex networks include metabolic
pathways [7], vehicular platoons [8]–[12], arrays of micro-mirrors
[13], micro-cantilevers [14], and smart power grids. These systems
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are diverse in their detailed physical behavior, however, they share an
important common feature that all of them consist of an interconnec-
tion of a large number of systems that affect each others’ dynamics.
There have been some progress in characterization of fundamental
limitations of feedback for some classes of dynamical networks. For
example, only to name a few, reference [15] gives conditions for string
instability in an array of linear time-invariant autonomous vehicles
with communication constraints, [16] provides a lower bound on
the achievable quality of disturbance rejection using a decentralized
controller for stable discrete time linear systems with time delays, [17]
studies the performance of spatially invariant plants interconnected
through a static network, [18] studies the time domain waterbed effect
for single state linear systems and shows time domain analysis is
useful for understanding the waterbed effect with respect to l1-norm
optimal control, and [19] investigates performance deterioration in
linear dynamical networks subject to external stochastic disturbances
and quantifies several explicit inherent fundamental limits on the
best achievable levels of performance and show that these limits of
performance are emerged only due to the specific interconnection
topology of the coupling graphs. Furthermore, [19] characterizes some
of the inherent fundamental tradeoffs between notions of sparsity and
performance in linear consensus networks.

Most of the above cited research on fundamental limitations of
feedback in interconnected dynamical systems have been focused on
networks with linear time-invariant dynamics. The main motivation
of this paper stems from a recent work presented in [1] that presents
that glycolysis oscillation can be an indirect effect of fundamental
tradeoffs in this system. The results of this work is based on a
linearized model of a two-state model of glycolysis pathway and
tradeoffs are stated using Bode’s results. In this paper, our approach
to characterize hard limits is essentially different in the sense that it
uses higher dimensional and more detailed nonlinear models of the
pathway. We interpret fundamental limitations of feedback by using
hard limits (lower bounds) on L2-gain disturbance attenuation of the
system [20]–[22], and L2-norm squared of the output of the system
[5], [23].

In this paper, our goal is to build upon our previous results [5],
[24] and develop methods to characterize hard limits on performance
of autocatalytic pathways. First, we study the properties of such
pathways through a two-state model, which obtained by lumping all
the intermediate reactions into a single intermediate reaction (Fig.
1). Then, we generalize our results to autocatalytic pathways that
are composed of a chain of enzymatically catalyzed intermediate
reactions (Fig. 2). We show that due to the existence of autocatalysis
in the system (which is a biochemical necessity), a fundamental
tradeoff between a notion of fragility and net production of the
pathway emerges. Also, we show that as the number of intermediate
reactions grows, the price for better performance increases.

II. MINIMAL AUTOCATALYTIC PATHWAY MODEL

A. Two-State Model

We consider autocatalysis mechanism in a glycolysis pathway.
The central role of glycolysis is to consume glucose and produce
adenosine triphosphate (ATP), the cell’s energy currency. Similar to
many other engineered systems whose machinery runs on its own
energy product, the glycolysis reaction is autocatalytic. The ATP



molecule contains three phosphate groups and energy is stored in the
bonds between these phosphate groups. Two molecules of ATP are
consumed in the early steps (hexokinase, phosphofructokinase/PFK)
and four ATPs are generated as pyruvate is produced. PFK is also
regulated such that it is activated when the adenosine monophosphate
(AMP)/ATP ratio is low; hence it is inhibited by high cellular ATP
concentration [7], [25]. This pattern of product inhibition is common
in metabolic pathways. We refer to [1] for a detailed discussion.

Experimental observations in Saccharomyces cerevisiae suggest
that there are two synchronized pools of oscillating metabolites
[26]. Metabolites upstream and downstream of phosphofructokinase
(PFK) have 180 degrees phase difference, suggesting that a two-
dimensional model incorporating PFK dynamics might capture some
aspects of system dynamics [27], and indeed, such simplified models
qualitatively reproduce the experimental behavior [7], [25].

We assume that a lumped variable x can encapsulate relevant
information of all intermediate metabolites and consider a minimal
model with three biochemical reactions as follows

PFK Reaction: s + αy
RPFK−−−−→ x,

PK Reaction: x
RPK−−−−→ (α+ 1)y + x′,

Consumption: y
RCONS−−−−−→ ∅.

(1)

In the PFK reaction, s is some precursor and source of energy for the
pathway with no dynamics associated, y denotes the product of the
pathway (ATP), x is intermediate metabolites, x′ is one of the by-
products of the second biochemical reaction (pyruvate kinase/PK). ∅
is a null state, α > 0 is the number of y molecules that are invested
in the pathway, and α + 1 is the number of y molecules produced.
A

k−−→ B denotes a chemical reaction that converts the chemical
species A to the chemical species B at rate k. The PFK reaction
consumes α molecules of ATP with allosteric inhibition by ATP. In
the second reaction, pyruvate kinase (PK) produces α+ 1 molecules
of ATP for a net production of one unit1. The third reaction models
the cell’s consumption of ATP. We refer to Fig. 1 for a schematic
diagram of biochemical reactions in the minimal model.

A set of ordinary differential equations that govern the changes in
concentrations x and y can be written as{

ẋ = RPFK(y) − RPK(x, y),

ẏ = −αRPFK(y) + (α+ 1)RPK(x, y) − RCONS(y).
(2)

The reaction rates are chosen according to the following steps. For
the PFK reaction, we have

RPFK(y) =
2ya

1 + y2h
, (3)

where a models cooperativity of ATP binding to PFK and h is the
feedback strength of ATP on PFK. For the PK reaction, we use

RPK(x, y) =
2kx

1 + y2g
, (4)

where k is intermediate reaction rate and g is the feedback strength
of ATP on PK. The coefficients 2 in the numerator and feedback
coefficient of the reaction rates come from the normalization. Finally,
the product y is consumed by basal consumption rate of 1 + δ, i.e.,

RCONS = 1 + δ (5)

in which δ is the perturbation in ATP consumption2. In Section IV,

1For the sake of simplicity of notations, we normalize the reactions such
that consumption of one molecule of y produces two molecules of y, which
is equivalent to α = 1.

2 In Example 2 of Section IV, the case of RCONS = kyy + δ is also
studied.

PFK 6C-P PK ATP
1 + δ

gu

Fig. 1: A schematic diagram of the minimal glycolysis model. The
constant glucose input along with α ATP molecules produce a pool of
intermediate metabolites, which then produces α+ 1 ATP molecules.

we consider more general reaction rates which are suitable for a
broad class of chemical kinetics models such as Michaelis-Menten
and mass-action. Reaction rates (3)-(5) are consistent with biological
intuition and experimental data in the case of the glycolysis pathway
[1]. In the final reaction, the effect of an external time–varying
disturbance δ on ATP demand is considered. The product of the
pathway, ATP, inhibits the enzyme that catalyzes the first and second
reactions, and the exponents h and g capture the strength of these
inhibitions, respectively. By combing all steps, the nonlinear dynamics
of (2)-(5) can be cast as

ẋ1 =
2xa2

1+x2h2
− 2kx1

1+x
2g
2

,

ẋ2 = − α 2xa2
1+x2h2

+ (α+ 1) 2kx1
1+x

2g
2

− (1 + δ) ,

(6)

with output variable
y = x2 (7)

for x1, x2 ≥ 0.

In order to make several comparisons possible, we normalize all
concentrations such that the equilibrium point of the unperturbed
system (i.e., when δ = 0) becomes[

x∗1
x∗2

]
=

[
1
k

1

]
. (8)

This can be achieved by nondimensionalizing the model.

In the minimal glycolysis model (6) expression 2

1+x2h2
can be

interpreted as the effect of the regulatory feedback control mechanism
employed by nature, which captures inhibition of the catalyzing
enzyme. This observation suggests the following control system
model for the minimal model of the glycolysis pathway[

ẋ1
ẋ2

]
=

[
1
−α

]
xa2u+

[
−1
α+ 1

]
2kx1

1 + x2g2
−
[

0
1 + δ

]
, (9)

where u is the control input and captures the effect of a gen-
eral feedback control mechanism. Our primary motivation behind
development and analysis of such control system models for this
metabolic pathways is to rigorously show that existing fundamental
tradeoffs in such models are truly unavoidable and independent of
control mechanisms used to regulate such pathways. For glycolysis
autocatalytic pathways, the results of the following sections assert
that the existing fundamental limits on performance of the pathway
depend only on the autocatalytic structure of the underlying network.

Stability properties of this model: According to [1], the equilibrium
point (8) of two-state glycolysis model (6) is stable if

0 < h− a <
k + g(1 + α)

α
.

Our aim is to show that for any stabilizing control input there is a
fundamental limit on the best achievable performance by the closed-
loop pathway.



B. Performance Measures

We quantify fundamental limits on performance of the glycolysis
pathway via two different approaches.

1) L2-Gain from Exogenous Disturbance Input to Output: In order
to quantify lower bounds on the best achievable closed-loop perfor-
mance of the two-state model (9), we need to solve the corresponding
regional state feedback L2-gain disturbance attenuation problem with
guaranteed stability. This problem consists of determining a control
law u such that the closed-loop system has the following properties:
(i) the zero equilibrium of the system (9) with δ(t) = 0 for all t ≥ 0 is
asymptotically stable with region of attraction containing Ω (an open
set containing the equilibrium point), (ii) for every δ ∈ L2(0, T ) such
that the trajectories of the system remain in Ω, the L2-gain of the
system from δ to y is less than or equal to γ, i.e.,∫ T

0

(y(t)− y∗)2dt ≤ γ2

∫ T

0

δ2(t)dt (10)

for all T ≥ 0 and zero initial conditions.
It is well-known that there exists a solution to the static state

feedback L2-gain disturbance attenuation problem with guaranteed
stability, in some neighborhood of the equilibrium point, if there exists
a smooth positive definite solution of the corresponding Hamilton-
Jacobi inequality; we refer to [20], [22] for more details.

The simplest robust performance requirement for model (9) is that
the concentration of y (i.e., ATPs) remains nearly constant when
there is a small constant disturbance in ATP consumption δ (see
[1], [5]). However, even temporary ATP depletion can result in cell
death. Therefore, we are interested in a more complete picture of the
transient response to external disturbances. We show that there exists
a hard limit on the best achievable disturbance attenuation, which we
denoted it by γ∗, for system (9) such that the problem of disturbance
attenuation (10) with internal stability is solvable for all γ > γ∗, but
not for all γ < γ∗. For a linear system, it is known that the optimal
disturbance attenuation can be calculated using zero-dynamics of the
system [20], [23]. There is no fundamental limit on performance if
and only if exogenous disturbance δ does not influence the unstable
part of the zero-dynamics of the system (as it is defined in [21] for
nonlinear systems).

2) L2-Norm or Total Energy of the Output: We characterize fun-
damental limitations of feedback for system (9) with initial condition
x(0) = x0 and zero external disturbances (i.e., δ(t) = 0) by
considering the corresponding cheap optimal control problem. This
case consists of finding a stabilizing state feedback control which
minimizes the functional

Jε(x0;u) =
1

2

∫ ∞
0

[
(y(t)− y∗)2 + ε2 (u(t)− u∗)2

]
dt, (11)

when ε is a small positive number. As ε → 0, the optimal value
J∗ε (x0) tends to J∗0 (x0), the ideal performance of the system. It
is well-known (e.g., see [28], page 91) that this problem has a
solution if there exists a positive semidefinite optimal value function
which satisfies the corresponding Hamilton–Jacobi-Bellman equation
(HJBE). The interesting fact is that the ideal performance is indeed a
hard limit on performance of system (9). It is known that for a specific
class of systems the ideal performance is the optimal value of the
minimum energy problem for the zero-dynamics of the system (see
[23] for more details). The ideal performance (hard limit function)
is zero if and only if the system has an asymptotically stable zero-
dynamics subsystem.

C. Fundamental limits on the Performance Measures

1) L2-Gain Disturbance Attenuation: In the following, it is shown
that there exists a hard limit on the best achievable degrees of

disturbance attenuation for system (9).
Theorem 1: Consider the optimal L2-gain disturbance attenuation

problem for the minimal glycolysis model (9). Then, the best achiev-
able disturbance attenuation gain γ∗ for system (9) satisfies the
following inequality

γ∗ ≥ Γ(α, k, g) (12)

and the hard limit function is given by

Γ(α, k, g) =
α

k + gα
. (13)

Proof: We recall that the optimal value of the achievable dis-
turbance attenuation level γ∗ is a number with the property that the
problem of disturbance attenuation with internal stability is locally
solvable for each prescribed level of attenuation γ > γ∗ and not
for γ < γ∗. In the first step, we introduce a new auxiliary variable
z = x1 + 1

α
x2. By transforming the dynamics of the system using

the following change of coordinates[
y
z

]
=

[
0 1
1 1

α

] [
x1
x2

]
, (14)

we obtain the following form{
ẏ = − α+1

α
2ky

1+y2g
+ (α+ 1) 2kz

1+y2g
− αyau− (1 + δ)

ż = 1
α

2kz
1+y2g

− 1
α2

2ky
1+y2g

− 1
α

(1 + δ).
(15)

Note that the optimal L2-gain disturbance attenuation of transformed
system (15) and the original system are the same. Based on [29,
Section 8.4] the optimal disturbance level for the linearized problem
will provide a lower bound for the optimal disturbance of the
nonlinear system. Furthermore, for the linear system this problem
reduces to a disturbance attenuation problem for the zero dynamics
with cost on the control input. Thus we consider the linearized zero
dynamics of (15) as follows

˙̄z =
k

α
z̄ − gα+ k

α2
ȳ − 1

α
δ, (16)

where {
z̄ = z − z∗ = z − (x∗ + 1

α
y∗)

ȳ = y − y∗
(17)

We now calculate optimal disturbance attenuation problem (from δ to
y) for the zero dynamics with cost on its control input y. For system
(16), the optimal value of γ is given by (see [21], [30] for more
details)

γ∗L =
α

k + gα
. (18)

Thus, we can conclude that

γ∗ ≥ γ∗L = H(α, k, g) =
α

k + gα
.

Theorem 1 illustrates a tradeoff between robustness and efficiency
(as measured by complexity and metabolic overhead). From (12) the
glycolysis mechanism is more robust efficient if k and g are large.
On the other hand, large k requires either a more efficient or a higher
level of enzymes, and large g requires a more complex allosterically
controlled PK enzyme; both would increase the cell’s metabolic load.
The hard limit function Γ(α, k, g) in Theorem 1 is an increasing
function of α. This implies that increasing α (more energy investment
for the same return) can result in worse performance. It is important
to note that these results are consistent with results in [1], where a
linearized model with a different performance measure is used.

2) Total Output Energy: It is shown that there exists a hard limit
on the best achievable ideal performance (L2-norm of the output)
of system (9). One can see that some minimum output energy (i.e.,



ATP) is required to stabilize the unstable zero-dynamics (15). This
output energy represents the energetic cost of the cell to stabilize it to
its steady-state. In the following theorem, we show that the minimum
output energy is lower bounded by a constant which is only a function
of the parameters and initial conditions of the glycolysis model. This
hard limit is independent of the feedback control strategy used to
stabilize the system.

Theorem 2: Suppose that the equilibrium of interest is given by (8)
and u∗ = 1. Then, there is a hard limit on the performance measure
of the unperturbed (δ = 0) system (9) in the following sense∫ ∞

0

(y(t;u0)− ȳ)2 dt ≥ α3k

(gα+ k)2
z20 + J(z0;α, k, g), (19)

where z0 = (x(0)− x∗) + 1
α

(y(0)− y∗), u0 is an arbitrary
stabilizing feedback control law for system (9), J(0;α, k, g) =
J(z;α, k, 0) = 0 and |J(z;α, k, g)| ≤ c|z|3 on an open set Ω around
the origin in R.

Proof: By introduction of a new variable z = x1 + 1
α
y, we

rewrite (9) in the canonical form (15). We denote by π(y, z; ε) the
solution of the HJB PDE corresponding to the cheap optimal control
problem to (9). We apply the power series method [31], [32] by first
expanding π(y, z; ε) in series as follows

π(y, z; ε) = π[2](y, z; ε) + π[3](y, z; ε) + . . . (20)

in which kth order term in the Taylor series expansion of π(y, z; ε)
is denoted by π[k](y, z; ε). Then (20) is plug into the corresponding
HJB equation of the optimal cheap control problem. The first term
in the series is

π[2](y, z; ε) =
[
y − y∗ z − z∗

]
P (ε)

[
y − y∗
z − z∗

]
,

where P (ε) is the solution of algebraic Riccati equation to the cheap
control problem for the linearized model (A0, B0). It can be shown
that P (ε) can be decomposed in the form of a series in ε (see [33]
for more details)

P (ε) =

[
εP1 εP2

εP2 P0 + εP3

]
+O(ε2).

Since the pole of the zero-dynamics of the linearized model is
located at the k

α
, we can verify that P0 = 2α3k

(gα+k)2
. Therefore, it

follows that π[2](y, z; ε) = α3k
(gα+k)2

z20 + O(ε). We only explain the
key steps. One can obtain governing partial differential equations
for the higher-order terms π[k](y, z; ε) for k ≥ 3 by equating the
coefficients of terms with the same order. It can be shown that
π[k](y, z) = π

[k]
0 (z) + επ

[k]
1 (y, z) + O(ε2) for all k ≥ 3. Then,

by constructing approximation of the optimal control feedback by
using computed Taylor series terms, one can prove that π(y, z; ε)→
α3k

(gα+k)2
z20 + (higher order terms in z0) as ε → 0. Thus, the ideal

performance cost value is α3k
(gα+k)2

z20 + J(z0;α, k, g).

According to Theorems 1 and 2, a fundamental tradeoff between a
notion of fragility and net production of the pathway emerges as
follows: increasing α (number of ATP molecules invested in the
pathway), increases fragility of the network to small disturbances
(based on Theorem 1) and it can result in undesirable transient
behavior (based on Theorem 2). The large fluctuation in the level of
ATP is not desirable, if the level of ATP drops below some threshold,
there will not be sufficient supply of ATP for different pathways in
the cell and that can result to cell death.

III. AUTOCATALYTIC PATHWAYS WITH MULTIPLE

INTERMEDIATE METABOLITE REACTIONS

In Subsection II-A, we studied the property of such pathways with a
two-state model (9), which is obtained by lumping all the intermediate
reactions into a single intermediate reaction. In the next step, we
consider autocatalytic pathways with multiple intermediate metabolite
reactions as shown in Fig. 2:

PFK Reaction: s + αy
RPFK−−−−→ x1,

Intermediates: x1
RIR−−−→ x2 · · ·

RIR−−−→ xn,

PK Reaction: xn
RPK−−−−→ (α+ 1)y + x′,

Consumption: y
RCONS−−−−−→ ∅.

(21)

A set of ordinary differential equations that govern the changes in
concentrations of xi for i = 1, . . . , n and y can be obtained as follows

ẋ1 = RPFK(y) − RIR(x1),

ẋ2 = RIR(x1) − RIR(x2),
...

ẋn = RIR(xn−1) − RPK(xn, y),

ẏ = (α+ 1)RPK(xn, y) − αRPFK(y) − RCONS

(22)

for xi ≥ 0 and y ≥ 0. Our notations are similar to those of the
two-state pathway model (1). The reaction rates are given as follows

RPFK(y) = 2ya

1+y2h
,

RPK(xn, y) = 2Knxn
1+y2g

,

RIR(xi) = Kixi for n = 1, 2, . . . , n,

RCONS = 1 + δ

(23)

Furthermore, in the glycolysis model (22), similar to the minimal
model (9), expression 2

1+x2h
can be interpreted as the effect of

the regulatory feedback control mechanism employed by nature that
captures inhibition of the catalyzing enzyme. Hence, we can derive
a control system model for the autocatalytic pathway with multiple
intermediate metabolite reactions as follows

ẋ1 = yau − K1x1,

ẋ2 = K1x1 − K2x2,
...

ẋn = Kn−1xn−1 − 2Knxn
1+y2g

,

ẋn+1 = (α+ 1) 2Knxn
1+x

2g
n+1

− αxan+1u − (1 + δ),

y = xn+1,

(24)

for xi ≥ 0 and y ≥ 0. In order to simplify our analysis and be able to
calculate explicit formulae, we assume that K := K1 = · · · = Kn >
0. We normalize all concentrations such that unperturbed steady states
become

y∗ = x∗n+1 = 1 and xi = K−1 (25)

for all i = 1, . . . , n.

A. L2-Gain Disturbance Attenuation

We extend our results in Theorem 1 to higher dimensional model of
autocatalytic pathways. In the following theorem, we show that there
exists a size-dependent hard limit on the best achievable disturbance
attenuation for system (24).

Theorem 3: Consider the optimal L2-gain disturbance attenuation
problem for glycolysis model (24). Then, the best achievable dis-
turbance attenuation gain γ∗ for system (24) satisfies the following
inequality

γ∗ ≥ Γ(α,K, g, n), (26)
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Fig. 2: A schematic diagram of a glycolysis pathway model with intermediate reactions. The constant glucose input along with α ATP molecules
produce a pool of intermediate metabolites, which then produces α+ 1 ATP molecules.

where the hard limit function is given by

Γ(α,K, g, n) =[(
K + gα

(
α+ 1

α

)n−1
n

)((
α+ 1

α

) 1
n

− 1

)]−1

.

Proof: First, by introducing a new variable z1 = x1 + 1
α
y, we

can cast the zero-dynamics of (24) in the following form
ż1 = −Kz1 + α+1

α
2Kxn
1+y2g

+ K
α
y − 1

α
(δ + 1),

ẋ2 = Kz1 − K
α
y − Kx2,

· · ·
ẋn = Kxn−1 − 2Kxn

1+y2g
.

(27)

Let us define
z :=

[
z1 x2 . . . xn

]T
, (28)

and
z∗ :=

[
1
K

+ 1
α

1
K

. . . 1
K

]T
. (29)

Then, we rewrite (27) in the following form

˙̄z = Az̄ + Bȳ + Cδ + f̄(z̄, ȳ), (30)

where

A =


−K 0 0 ... (1+ 1

α
)K

K −K 0 ... 0
0 K −K ... 0

...
. . .

...
0 0 0 ... −K

 ,
B =

−
α+1
α

g+K
α

−K
α

...
g

 , C =

− 1
α
0
...
0

 , (31)

z̄ = z − z∗, ȳ = y − y∗, f̄(0, 0) = 0 and∥∥∥∂f̄(z̄, ȳ)

∂(z̄, ȳ)

∥∥∥ ≤ c|(z̄, ȳ)|, (32)

near the origin in Rn for c > 0. Now, according to [22] we know
that if the system (35) has L2-gain ≤ γ, then the linearized system
has L2-gain ≤ γ. Hence, we only consider the linearized system, i.e.,

˙̄z = Az̄ + Bȳ + Cδ. (33)

Note that λ = K
[
(α+1
α

)
1
n − 1

]
is the eigenvalue of A with the

greatest real part. And the corresponding left eigenvector of λ, is v =[
1 (α+1

α
)

1
n . . . (α+1

α
)
n−1
n

]T
. Now, we consider the following

subsystem of (33)

˙̃z = λz̃+
[(

(1+
1

α
)
n−1
n − (1+

1

α
)
)
g− K

α

(
(1+

1

α
)

1
n −1

)]
ȳ− 1

α
δ.

Based on the result of [30] and [21], the formula to compute the
optimal value of γ reduces to

γ∗L ≥
1(

K + gα(1 + 1
α

)
n−1
n

)(
(1 + 1

α
)

1
n − 1

) .

Note that according to Proposition 6 of [22], γ∗L is a lower bound for
the optimal γ∗ of the nonlinear system (24).

B. Total Output Energy

It is proven that there exists a size-dependent hard limit on the best
achievable ideal performance of system (24).

Theorem 4: Suppose that the equilibrium of interest is given by
(25) and u∗ = 1. Then, the L2-norm of the output of the unperturbed
system (24) cannot be made arbitrarily small, which implies that there
is a fundamental limit on performance in the following sense∫ ∞

0

(
y(t;u0)− y∗

)2
dt (34)

≥ H(z0;α,K, g, n) + J(z0;α,K, g, n),

where

H(z0;α,K, g, n) =

α2K
(

1
α

(y(0)− y∗) +
∑n
i=1(α+1

α
)
i−1
n (xi(0)− x∗i )

)2(
(α+1
α

)
1
n − 1

)(
K + gα(α+1

α
)
n−1
n

)2 ,

u0 is an arbitrary stabilizing feedback control law for system
(24), z0 = z(0) − z∗ where z and z∗ are defined by (28) and
(29) respectively, J(0;α,K, g, n) = J(z;α,K, 0, n) = 0, and
|J(z;α,K, g, n)| ≤ c|z|3 on an open set Ω around the origin in
Rn.

Proof: The proof of this theorem based on results from [31],
[32] and Theorem 2. Similar to the proof of Theorem 3, one can cast
the zero-dynamics of the unperturbed system (24) as follows

˙̄z = Az̄ + Bȳ + f̄(z̄, ȳ), (35)

where A and B are given by (31), z̄ = z−z∗, ȳ = y−y∗, f̄(0, 0) = 0
and ∥∥∥∂f̄(z̄, ȳ)

∂(z̄, ȳ)

∥∥∥ ≤ c|(z̄, ȳ)|

near the origin in Rn for c > 0. We denote by π(y, z; ε) the solution
of the HJB PDE corresponding to the cheap optimal control problem
to the unperturbed system (24). We apply the power series method
[31], [32] by first expanding π(y, z; ε) in series as in (20), where
π[k](y, z; ε) denotes k’th order term in the Taylor series expansion of
π(y, z; ε). Then, (20) is plugged into the corresponding HJB equation
of the optimal cheap control problem. The first term in the series is

π[2](y, z; ε) =
[
y − y∗ z − z∗

]
P (ε)

[
y − y∗
z − z∗

]
,

where P (ε) is the solution of algebraic Riccati equation to the cheap
control problem for the linearized model. It can be shown that P (ε)
can be decomposed in the form of a series in ε (see [33] for more
details)

P (ε) =

[
εP1 εP2

εP2 P0 + εP3

]
+O(ε2)



in which P0 is the positive solution of the associated algebraic Riccati
equation for (A,B), i.e.,

ATP0 + P0A = P0BB
TP0.

It follows that

π[2](y, z; ε) =
1

2
zT
0P0z0 +O(ε).

One can obtain governing partial differential equations for the higher-
order terms π[k](y, z; ε) for k ≥ 3 by equating the coefficients of
terms with the same order. It can be shown that

π[k](y, z) = π
[k]
0 (z) + επ

[k]
1 (y, z) +O(ε2)

for all k ≥ 3. Then, by constructing approximation of the optimal
control feedback by using computed Taylor series terms, one can
prove that π(y, z; ε)→ 1

2
zT
0P0z0+(higher order terms in z0) as ε→

0. Thus, the ideal performance cost value can be written as

lim
ε→0

π(y, z; ε) =
1

2
zT
0P0z0 + J(z0;α,K, g, n). (36)

Next, we obtain a lower bound on 1
2
zT
0P0z0. The characteristic

equation of matrix A is characterized by

(x+K)n − α+ 1

α
Kn = 0.

Therefore, one can see that λ = K
[
(α+1
α

)
1
n − 1

]
is the eigenvalue

of A with the greatest real part and its corresponding left eigenvector

is v =
[
1 (α+1

α
)

1
n . . . (α+1

α
)
n−1
n

]T
. Now, let us consider the

subsystem associated to this mode as follows

˙̃z = λz̃ +
[(

(
α+ 1

α
)
n−1
n − (

α+ 1

α
)
)
g − K

α

(
(
α+ 1

α
)

1
n − 1

)]
ȳ,

where

z̃ = vTz̄ =
1

α
ȳ +

n∑
i=1

(
α+ 1

α

) i−1
n

x̄. (37)

The corresponding cost value for this subsystem is given by

1

2
zT
0P0z0 ≥

α2Kz̃(0)2(
(α+1
α

)
1
n − 1

)(
K + gα(α+1

α
)
n−1
n

)2 (38)

which is a lower bound for the linearized cost 1
2
zT
0P0z0. Finally, using

(36), (37) and (38), we get the desired result.

In the case that the number of intermediate reactions is one (i.e.,
n = 1) the results of Theorems 3 and 4 reduce to the results of
Theorems 1 and 2, respectively. Through a straightforward analysis,
one can argue that H(z0;α,K, g, n) ∈ O(n) and Γ(α,K, g, n) ∈
O(n), and they can be approximated by

H(z0;α,K, g, n) ≈
α2K

(
1
α

(y(0)− y∗) +
∑n
i=1(α+1

α
)
i−1
n (xi(0)− x∗i )

)2(
K + g(α+ 1)

)2
ln(α+1

α
)

n

and
Γ(α,K, g, n) ≈ n(

g(α+ 1) +K
)

ln(1 + 1
α

)
. (39)

This implies that as the number of intermediate reactions n grows, the
price paid for robustness for both H(z0;α,K, g, n) and Γ(α,K, g, n)
increases linearly by network size n. In general, the larger the number
of intermediate reactions involved in the breakdown of a metabolite,
the less complex the enzymes involved in the individual reactions
need to be. On the other hand, increasing the number of intermediate
metabolites results in larger Γ and H which means less robustness
to disturbances and having undesirable transient behavior.

x1 x2 x3 xn, u

δ

Fig. 3: The schematic diagram of the nonlinear network (42) with a cyclic
feedback structure with an output disturbance δ and control input u.

IV. GENERAL AUTOCATALYTIC PATHWAYS

In the final step, we turn our focus on networks with autocatalytic
structures (as shown in Fig. 3) that belong to a class of nonlinear
dynamical networks with cyclic feedback structures driven by dis-
turbance. Each network consists of a group of nonlinear subsystems
with state-space dynamics{

ẋi = −fi(xi) + ui
yi = gi(xi)

(40)

for xi ≥ 0, yi ≥ 0, 1 ≤ i ≤ n, and{
ẋn+1 = −fn+1(xn+1) + un+1 − αu,
yn+1 = u,

(41)

where fi(·) and gi(·) for i = 1, . . . , n are increasing functions.
Moreover, ui(t), yi(t) and xi(t) are input, output and state variables
of each subsystem, respectively. These assumptions are suitable for a
broad class of chemical kinetics models such as Michaelis-Menten
and mass-action. The state-space representation of the nonlinear
cyclic interconnected network shown in Fig. 3 is given by

ẋ1 = − f1(x1) + yn+1,

ẋ2 = − f2(x2) + y1,

· · ·
ẋn+1 = − fn+1(xn+1) + yn − αu+ δ,

y = xn+1.

(42)

Assumption 1: We assume that x∗i for i = 1, . . . , n and y∗ are
equilibrium points of the unperturbed system (42). Moreover, it is
assumed that

a := f ′1(x∗1) = f ′2(x∗2) = · · · = f ′n(x∗n), (43)

where f ′i(x
∗
i ) := dfi

dxi

∣∣∣
xi=x

∗
i

.

Theorem 5: For cyclic networks (42), if

r :=

(
g′1(x∗1)g′2(x∗2) · · · g′n(x∗n)

α

) 1
n

> a, (44)

then there exists a hard limit on the best achievable disturbance
attenuation (i.e., γ∗ > 0) for system (42) such that the regional
state feedback L2–gain disturbance attenuation problem with stability
constraint is solvable for all γ > γ∗ and is not solvable for all γ < γ∗.
Furthermore, the hard limit function is given by

γ∗ ≥ Γ(f ′n+1(y∗), r, a) =
1

f ′n+1(y∗) + r − a . (45)

Proof: In the first step, we introduce a new auxiliary variable
z1 = x1 + 1

α
xn+1. We can cast the linearized zero-dynamics of (41)

in the following form

ż = A0z + B0y + C0δ, (46)



where z = [z1, x2, · · · , xn]T,

A0 =


−a 0 . . . 0 α−1g′n(x∗n)

g′1(x∗1) −a . . . 0 0
...

...
. . .

...
...

0 0 . . . −a 0
0 0 . . . g′n−1(x∗n−1) −a

 ,

B0 =



a−f ′n+1(y
∗)

α

− g
′
1(x
∗
1)

α
...
0
0

 , and C0 =


α−1

0
...
0
0

 . (47)

Then, we consider the characteristic equation of matrix A0 which is
given by

(λ+ a)n − rn = 0. (48)

From (44) and (48), it follows that λ1 = r − a is the eigenvalue of
A0 with the largest real-part value with left eigenvector

v1 =
[

1 ,
r

g′1(x∗1)
, . . . ,

rn−1

g′1(x∗1)g′2(x∗2) · · · g′n−1(x∗n−1)

]T
.

The unstable subsystem of (46) is characterized by

ż = λ1z + α−1 (a− f ′n+1(y∗) − r
)
y + α−1δ. (49)

From the results of [30] and [21], the formula to compute the optimal
value of γ reduces to

γ∗L =
1

f ′n+1(y∗) + r − a . (50)

We emphasize that according to [22, Proposition 6], γ∗L is a lower
bound for the optimal γ∗ for the nonlinear system (42).

V. EXAMPLES

We apply our results to metabolic pathway (1) and quantify its
existing hard limits. We assume that the second reaction in (1) has
no ATP feedback ATP on PK, i.e., g = 0. We consider two scenarios
for the consumption rate RCONS; in the first example, we assume the
product y is consumed by basal consumption rate 1 + δ, and then,
in the second example, we consider the case where the consumption
rate depends on y.

Example 1: Let us consider the minimal representation of autocat-
alytic glycolysis pathway given by (1). It is assumed that the second
reaction in (1) has no ATP feedback ATP on PK, i.e., g = 0. Then,
we can rewrite (6) as follows

ẋ1 =
2ya

1 + y2h
− kx1, (51)

ẏ = −α 2ya

1 + y2h
+ (α+ 1)kx1 − (1 + δ), (52)

for x1 ≥ 0 and y ≥ 0. By considering expression 2ya

1+y2h
as

the regulatory feedback control employed by nature that captures
inhibition of the catalyzing enzyme, a control system model for
glycolysis can be obtained as follows

ẋ1 = −k x1 + u, (53)

ẏ = (α+ 1)k x1 − αu− 1− δ, (54)

where u is the control input. Using (53)-(54) and Theorem 5, it
follows that

γ >
α

k
, (55)

where the equilibrium point of the unperturbed system is given by
x1 = 1/k and y = 1. As we expected (55) is consistent with the

result of Theorem 1.
Example 2: Let us now consider the minimal representation of

autocatalytic glycolysis pathway represented by (1) with consumption
rate depending on y that is given by

RCONS = kyy + δ.

We refer to [6] for a complete discussion. Then, a set of ordinary
differential equations that govern the changes in concentrations x1
and y can be written as

ẋ1 = −k x1 +
2ya

1 + y2h
,

ẏ = −α 2ya

1 + y2h
+ (α+ 1)k x1 − (kyy + δ) ,

for x1 ≥ 0 and y ≥ 0. The exogenous disturbance disturbance
input is assumed to be δ ∈ L2([0,∞)). To highlight fundamental
tradeoffs due to autocatalytic structure of the system, we normalize
the concentration such that steady-states become

y∗ = 1 and x1
∗ =

ky
k
. (56)

As we discussed earlier, one may consider expression 2ya

1+y2h
as

the regulatory feedback control employed by nature that captures
inhibition of the catalyzing enzyme. Hence, we can derive a control
system model for glycolysis as follows

ẋ1 = −k x1 + u, (57)

ẏ = (α+ 1)k x1 − αu− ky y − δ, (58)

where u is the control input. Now, applying Theorem 5 to this model,
it follows that

γ >
α

k + αky
. (59)

Equation (59) illustrates a tradeoff between robustness and efficiency
(as measured by complexity and metabolic overhead). From (59) the
glycolysis mechanism is more robust efficient if k and ky are large.
On the other hand, large k requires either a more efficient or a higher
level of enzymes, and large ky requires a more complex allosterically
controlled PK enzyme; both would increase the cell’s metabolic load.
We note that the existing hard limit is an increasing function of α.
This implies that increasing α (more energy investment for the same
return) can result in worse performance. It is important to note that
these results are consistent with results in [6], where a linearized
model with a different performance measure is used.

VI. CONCLUSION

The primary goal of this paper is to characterize fundamental limits
on robustness and performance of a class of dynamical networks with
autocatalytic structures. A simplified model of Glycolysis pathway is
considered as the motivating application. We explicitly derive hard
limits on the best achievable performance of the autocatalytic path-
ways with intermediate reactions which are characterized as L2-norm
of the output as well as L2-gain of disturbance attenuation. Then, we
explain how these resulting hard limits lead to some fundamental
tradeoffs. For instance, due to the existence of autocatalysis in the
system, a fundamental tradeoff between a notion of fragility (e.g.,
cell death) and net production of the pathway emerges. Moreover,
it is shown that as the number of intermediate reactions grows, the
price paid for robustness increases. On the other hand, the larger
the number of intermediate reactions involved in the breakdown of a
metabolite, the less complex the enzymes involved in the individual
reactions need to be. This illustrates a tradeoff between robustness
and efficiency as measured by complexity and metabolic overhead.
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